

New understanding of novel components in advanced lead batteries

Lead-Carbon Cloth Composite: Serving a Dual Purpose in a Lead-Acid Battery (LAB)

National Formosa University, Taiwan Department of Materials Science and Engineering Associate Prof. Shu-Huei Hsieh

Sep 16-19, 2024

Introduction of Nano Materials Lab Department of Materials Science & Engineering

- Synthesis of nanoparticles, nanorods, nanowires, GO by wet chemical method(electro-electroless plating, sol-gel, hydro-thermal method etc.)
- Modification of Carbon Materials
- Lead Carbon Fiber Composite (LCF)

SEM image of Pb/graphene

Outline

- 1. Why Use CF cloth applied in Lead-Acid Batteries?
- 2. Application of Pb-CF Cloth composite applied in Lead-Acid batteries
- 3. Why does inserting LCF enhance the performance of Lead Acid batteries
- 4. Conclusion

Lead – Carbon: Low Interaction Energy

4

Table 1. Surface tensions of various liquids and their wetting ability of nanotubes

Element/ compound	Surface tension (mN/m)	Wetting	Reference
HNO ₃	43	Yes	[15]
S	61	Yes	[7]
Cs	67	Yes	[7]
Rb	77	Yes	[7]
V_2O_5	80	Yes	[14]
Se	97	Yes	[7]
Pb oxides	(PbO ~132)	Yes	[11]
Bi oxides	$(Bi_2O_3 \sim 200)$	Yes	[12]
Te	190	No	[7]
РЬ	470	No	[7]
Hg	490	No	[7]
Ga	710	No	[7]

Ebbesen, J. Phys. Chem. Solids, 57, 951, 1996

Mechanism of PbSO₄ accumulation

Ref: Pavlov and Nikolov, "Lead-Carbon Electrode with Inhibitor of Sulfation for Lead-Acid Batteries Operating in the HRPSoC Duty", 159(8) JES 2012

Adding EAC_Highly catalytic effect on the charge reaction

Ref: D. Pavlov etc. "Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries" • 191 JPS 2009.

Lead Carbon Cloth Composite

To Be

A continuous carbon material 100% coverage of Pb on C

Monolithic and flexible Carbon Cloth

Carbon Fiber/Cloth SEM Morphology

As is NLA w/C and 3D Pore Structure (100% DoD)

Confidential Do not duplicate or distribute without written permission from National Formosa Uni Nano Materials Lab

Lead Carbon Fiber Cloth Composite (LCF)

CF Electrode

Cross section SEM Morphology of CF electrode

Low Temperature HOT Press Yes! $600^{\circ}C \rightarrow 400^{\circ}C \rightarrow < 200^{\circ}C$

✓ A continuous carbon material
 ✓ 100% coverage of Pb on C

Confidential_Do not duplicate or distribute without write permission from National Formosa UniMasic Materials Lab

Cyclic Voltammetry of Pb vs. LCF

Electrochemical Impedance Spectroscopy of Pb vs. LCF

Battery assembly

Battery Consultant: Mr. Hank Wu

LCF electrodes act as electrodes to assemble a cell.

CF electrodes/plates

Tools / Battery parts

Plate Group

2V Battery

LCF 2V Battery_+/- 6.6*3.9 cm

High-rate cycling test with 4C charge/10C discharge

A Pb/CF cloth/Pb composite as a highly efficient lead-carbon electrode exhibits notable charge acceptance and long cycle life for lead-acid batteries (LAB) during HRPSoC cycling

+ 2/- 3 LCF composed 2 V battery C10=0.3Ah

Confidential_Do not duplicate or distribute without Ovritten permission from National Formosa UNBROMAterials Lab

High-rate cycling test with 1C charge/3C discharge, then IEC61427

High-rate cycling test with 1C charge/3C discharge, then IEC61427

Confidential_Do not duplicate or distribute without written permission from National Formosa University

After Charge/Discharge cycling Porous Nano_Pb Structure

Summary of Findings

- > A Pb/CF cloth/Pb composite can be fabricated using a low-temperature process.
- A Pb/CF cloth/Pb composite as a highly efficient lead-carbon electrode exhibits notable charge acceptance and long cycle life for lead-acid batteries (LAB) during HRPSoC cycling.
- According to the IEC 61427 standard, the Pure LCF Battery has currently achieved 10 years.

Outline

- 1. Why Use CF cloth applied in Lead-Acid Batteries?
- 2. Application of Pb-CF Cloth composite applied in Lead-Acid batteries
- 3. Why does inserting LCF enhance the performance of Lead Acid batteries
- 4. Conclusion

Impact of insert Lead-Carbon Fiber (LCF)Plate on LA Battery

Battery Capacity during 1C Charge/Discharge Cycling

Confidential_Do not duplicate or distribute without written16 ermission from National Formosa University

Lab Battery(12V6AH) vs Commercial Battery (12V7AH)

500W Cycling Performance Comparison

Lab:240 cycles consistent discharge time & remaining capacity 100% Com:80 cycles decay discharge time & remaining capacity 41%

Confidential_Do not duplicate or distribute without $\sqrt[4]{7}$ tten permission from National Formosa University

Water loss after constant 500W Discharge for 1st 60 cycles

Confidential_Do not duplicate or distribute without written permission from National Formosa University

Lab Battery(12V6AH) vs Commercial Battery (12V7.5AH)

Confidential_Do not duplicate or distribute without without without permission from National Formosa University

19

Lab Battery(12V6AH) Idle Stop-Start Test

The life cycle of Labs:220000 cycles VS Top Brand:80000~100000 cycles Test method: Honda ISS for 90 cc Motorcycles

Confidential_Do not duplicate or distribute without written permission from National Formosa UniversionMaterials Lab

田洋社區_鄧麗君出生地

Birthplace of Teresa Teng Li-Chun

LCF Battery Light Up Longyan Station

21

NFU NanoMaterials Lab

Lab Battery(12V50AH) vs Commercial Battery (12V50AH)

 LCF Battery(on work): 20231124 to Now over 9 Months
 Commercial Battery (failed):2023/06/09-2023/11/24
 <6 Months

PV Charge to 28.8V /Discharge from 18:00~00:00
 No power_No sunshine due to rainy days or leaf shielding

LCF Battery Light Up Longyan Station

Confidential Do not duplicate or distribute without written permission from National Formosa L

田洋社區_鄧麗君出生地

Birthplace of Teresa Teng Li-Chun

Lab Battery System vs Commercial Battery System

Line and a stress of the second and second and second and stress of the second and seco

Outline

- 1. Application of Pb-CF Cloth composite applied in Lead-Acid batteries
- 2. Why Use CF cloth applied in Lead-Acid Batteries?
- 3. Why does inserting LCF enhance the performance of Lead Acid batteries
- 4. Conclusion

Battery inserted LCF (12V6AH) vs Battery without inserting LCF (12V7AH)

High Rate 119 A discharge 15sec Battery inserted LCF 19.83C vs Battery without inserting LCF

Confidential_Do not duplicate or distribute without written permission from National Formosa University

Battery inserted LCF (12V6AH) vs Battery without inserting LCF (12V7AH)

The charge voltage shows a pulse voltage in a battery-inserted LCF, which is used as a capacitor to enhance charge acceptance.

Confidential_Do not duplicate or distribute without written permission from National Formosa University

Positive Paste electrode of Failed Batteries after CP cycling

Confidential_Do not duplicate or distribute without written permission from National Formosa University

Negative Paste electrode of Failed Batteries after CP cycling

Battery inserted LCF

Battery without inserting LCF

Confidential_Do not duplicate or distribute without written permission from National Formosa University

Inhibit Bulging Side

Battery inserted LCF

Battery without inserting LCF

29

Confidential_Do not duplicate or distribute without written permission from National Formosa Uni NanoMaterials Lab

Conclusion

- A Pb/CF cloth/Pb composite as a highly efficient lead-carbon electrode exhibits notable charge acceptance and long cycle life for lead-acid batteries (LAB) during HRPSoC cycling.
- Lead-Acid Battery Inserted LCF:
 - ✓ Tripled High-rate Cycle life with Consistent Discharge Time
 - ✓ High charge acceptance
 - ✓ Effect of pulse charge
 - ✓ Inhibit Sulfation
 - \checkmark Inhibit Bulging Side

Further study is in progress.

- Develop a low-temperature continuous process to fabricate the Pb/CF cloth/Pb composites.
- Using recycled CF to replace activated CF in Pb/CF cloth/Pb composites.

Thank you for your Attention

