

ELBC 2024 - MILAN

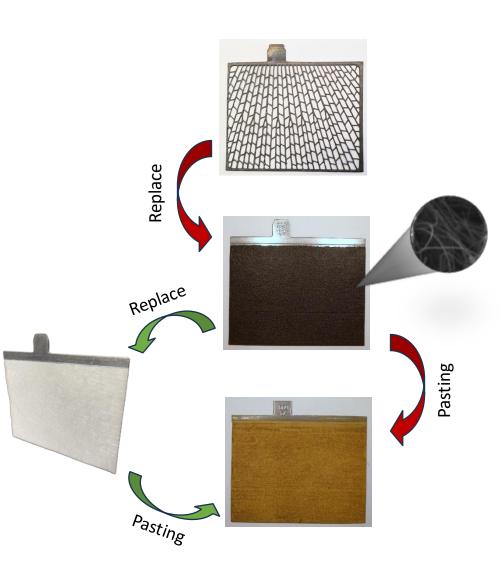
"Novel glass fabric electrode material for grid replacement in lead batteries"

SHANE CHRISTIE – ARCACTIVE NICOLAS CLEMENT – HOLLINGSWORTH AND VOSE

ArcActive Fabric Structured Electrodes

Gen 1: Carbon Fibre Fabric

Applications:


Hollingsworth & Vose[®]

- Automotive: High DCA, Low Water Consumption
- □ UPS / Telecom: Delay AGM Dry Out

BCI Innovation Award: Winner, 2020

<u>Gen 2:</u> Glass Fiber Fabric → GEM

What is ArcActive GEM technology ?

Hollingsworth & Vose[®]

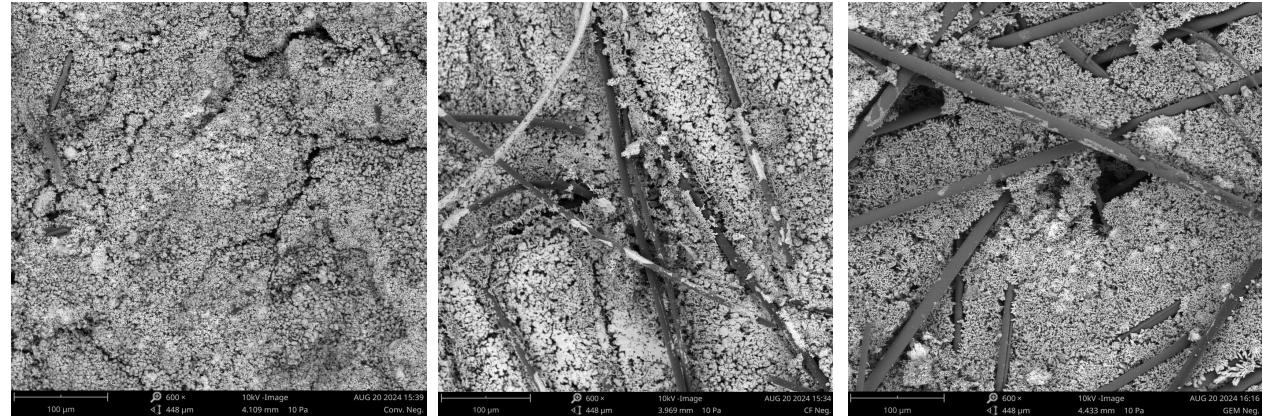
ARCACTIVE / 3

Video of lug casting and pasting:

Coming soon to a PowerPoint near you: Filming is done. Video edition in Progress. This slide will be updated by Sept 12th Aimee will update.

Video of lug casting and pasting:

Coming soon to a PowerPoint near you: Filming is done. Video edition in Progress. This slide will be updated by Sept 12th Aimee will update.

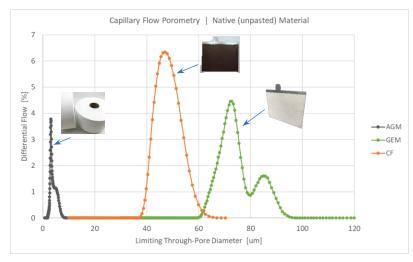


SEM Formed Plates

Standard NAM Carbon fiber base NAM

Formed plates: From SEM Phenom XL

Hollingsworth & Vose[®]

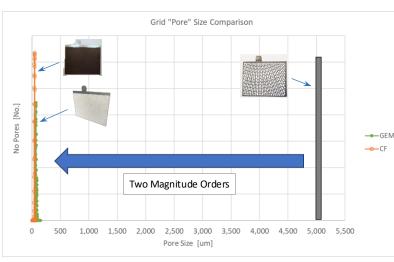

ARCACTIVE / 6

Pore Structure

Pore structure of GEM is more "open" than AGM, and similar to Carbon Fiber Felt

- Active material (paste) is contained wholly within fibrous pore structure

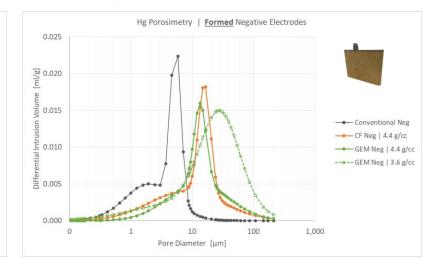
Fibrous Substrates: GEM, Carbon Fiber



Median Pore Sizes (unpasted):

Hollingsworth & Vose[®]

AGM = $\sim 4 \mu m$ | CF = $\sim 50 \mu m$ | GEM = $\sim 70 \mu m$


Grid Type Comparison

Active material (paste) is contained within the "pores" of the grid:

- Conventional lead grid "pores": ~ 5 mm
- GEM/Carbon Fiber Pores are two magnitude orders smaller than a conventional Pb grid

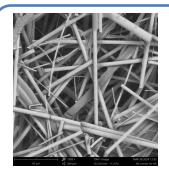
Negative Electrodes (100% SoC)

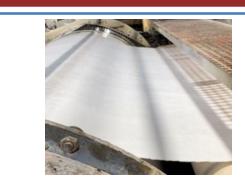
Formed Negative GEM / Carbon Fiber Electrodes feature pore structures similar to conventional negatives, albeit:

- Increased pore volume in the 10-30 μm range
- Fabric structure mechanically stabilizes active material
 - Lower density (more porous) paste recipes are possible

Breakthrough solution for lead acid battery

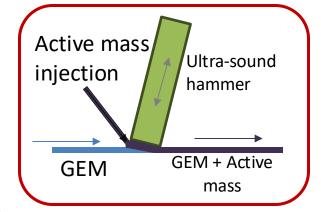
	Application	Advantage	Customer Benefit
CAR BATTERY	Auto: Micro Hybrid	High and Sustained DCA with very low Water Loss	Low-cost CO ₂ compliance
	Auto: EV Aux	High Charge Recoverability	Reduce likelihood of Aux battery having low SoF and rendering EV inoperable
	Auto AGM (hot territories)	Long time to separator dryout	Reduce Dryout warranty claims



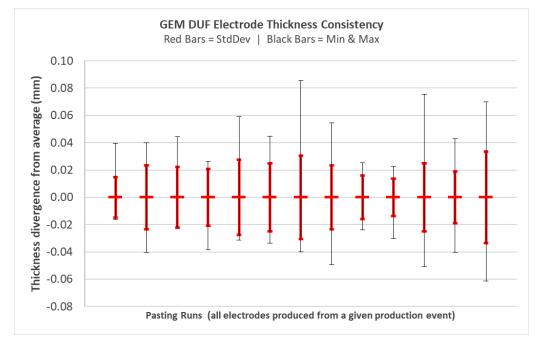


GEM Processing

Creating a Cleaner World[™]




GEM is different than AGM but uses same production tools


More than 8000 plates have been produced with GEM at ArcActive

GEM structure is **very open** to enable excellent paste-ability and **compressible** for best plate thickness control

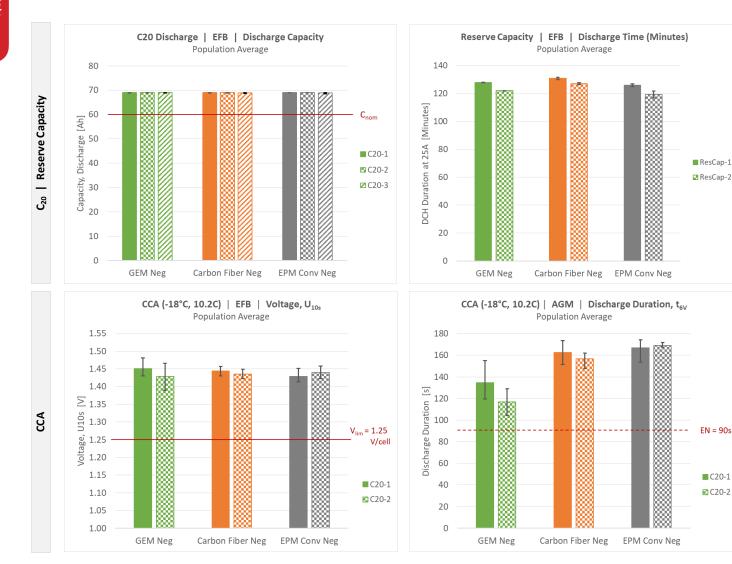
Pasting GEM enable low plate thickness variation (± 20µm)

GEM Performance Summary

Extensive electrical testing performed on prismatic 2V cells:

Automotive Type: 60 Ah, 13 plates (6P, 7N)

	Negative Variant		
Battery Performance	GEM	CF	Trad
C ₂₀ / ResCap			
CCA			
Water Consumption			
DCA			
50% DoD (to date)			


GEM preforms equivalently to Carbon Fiber in most battery tests.

- Excels in water consumption testing.
- Strong, but slightly reduced CCA (cf Carbon Fiber)

Test Data Discharge Capacity - C₂₀, Reserve Capacity & CCA

Standard: EN 50342-1: 2015

Discharge Capacity:

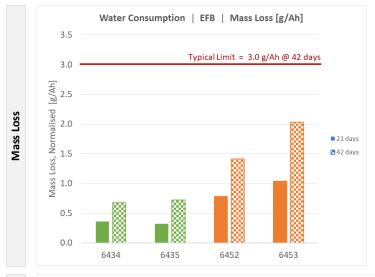
• GEM and Carbon Fiber Negatives deliver equivalent performance to Conventical Negatives

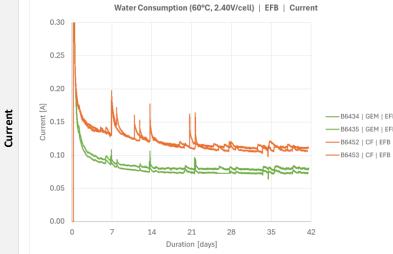
CCA:

EN = 90s

C20-1

C20-2


- GEM negatives equivalent CCA voltage •
- Strong but slightly reduced energy



Test Data | Water Consumption

Standard: EN 50342-1: 2015, 6.9

Conditions: Temp: 60°C | Voltage: 2.40 V/cell (14.40 V equiv) | Duration: 42 / 84 days

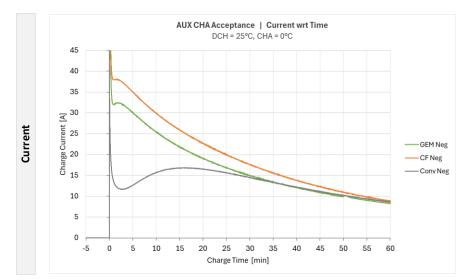
AA GEM electrodes produce very low water consumption.

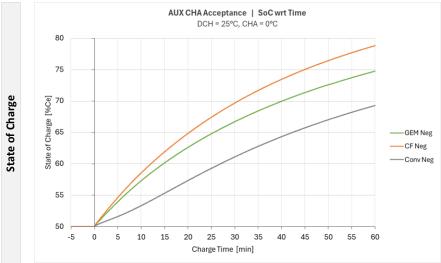
WC Results @ 42 days

GEM:	< 1.0 g/Ah
CF:	1.5 – 2.5 g/Ah

GEM fibers are non-conductive: do not present hydrogen-active surface area

> Hydrogen overpotential increased, gassing current reduced.




Test Data | (Aux) Charge Acceptance

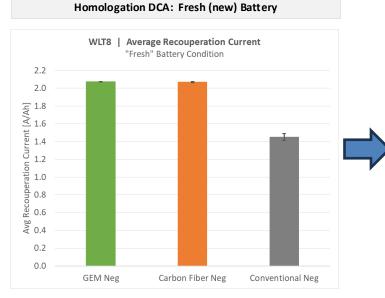
Test Data

 Standard:
 EN 50342-1: 2015, 6.4

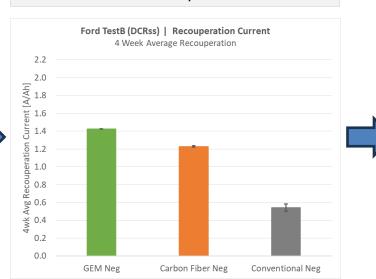
 Conditions:
 DCH Temp: 25°C | CHA Temp: 0°C | SoC: 50 %C_e

Both GEM and Carbon Fiber electrodes have strong charge recovery at 0°C.

Notably improved cf Conventional

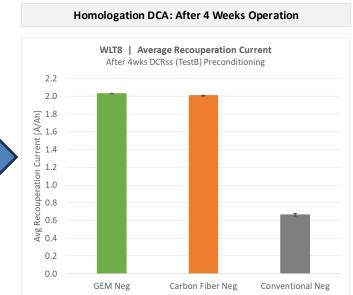

State of charge increased more rapidly in the first 20-30 min

- SoC gain after 15 min:
 - \Box AA CF Neg: 12 %C_e
 - \Box AA GEM Neg: 10 % C_e
 - \Box EPM Neg: 5 %C_e


Test Data | DCA - Homologation (WLT8) with Preconditioning

Standard:Homologation WLT8 Protocol (E.Karden, ALBA 2021) & "TestB" Reference DCA Test (Ford, 2012)Conditions:**Temp:** 25°C | **Preconditioning**: 4wks DCRss

Homologation DCA: "Fresh" battery


- Performance typically good for many battery designs
- Many territories outside of Europe do not allow recharge of battery before homologation testing
 - "Fresh battery" DCA not observed in these territories

Simulated Vehicle Operation: 4wks

Simulated Vehicle Operation:

- 4 weeks of simulated vehicle operation by Ford TestB DCA
- DCA of conventional negatives tends to decrease in real-world operation
 - TestB reproduces this effect

Homologation DCA on "used" batteries:

- Conventional Negative performance is reduced compared to "fresh" state
- ArcActive fabric structured electrode performance remains high

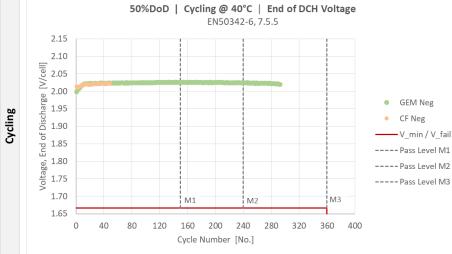
ARCA

2 A/Ah approx. maximises alternator power & therefore maximises CO₂ reduction

Hollingsworth & Vose[®] / 14

Test Data

Test Data | Durability Cycling - 50% DoD w/ OverDCH Precond


Test Data

Standard: EN 50342-6: 2015, 7.5

Conditions: Temp: 40°C | Preconditioning: Over-discharge, 7 days 10W Resistor

Testing in Progress

Fabric-reinforced negative electrodes tolerate over-discharge

• GEM electrodes easily exceed minimum current requirements after 7day over-discharge.

50% DoD cycling durability on-track to achieve "M3" (360 cycles) performance requirement

• Cycling in progress - progressing well.

ArcActive technology + GEM from Hollingsworth & Vose → New way of making electrode

Questions ?

Reach out for Shane Christie or Nicolas Clement

