ELBC, Milan, Italy, September 2024

Market and technology trends for 12V batteries in electrified vehicles

19 September 2024

Eckhard Karden Consultant

karden@batteryinnovation.org eckhard.karden@gmx.net

Eckhard Karden

- Technology Consultant in the field of lead-acid batteries and their applications
- Jul 2002 Nov 2023: Ford Motor Company, European Research and Innovation Center in Aachen, Germany: technology assessment, advanced engineering, system integration of
 - o stop-start batteries (EFB),
 - o microhybrid batteries with enhanced charge acceptance (EFB+C),
 - auxiliary batteries with Functional Safety requirements (mostly AGM),
 - o battery monitoring systems for the above applications.
- 1994 2002: Researcher and Senior Engineer at the Institute for Power Electronics and Electrical Drives (ISEA) of RWTH Aachen University, where he previously had obtained a Ph.D. in Electrical Engineering and a diploma in Physics.
- research career focusing on application-related aspects of lead-acid batteries, including modelling, state detection, impedance spectroscopy and charging performance.
- fostering application-driven innovation at the supply base by involvement in German, European and International standardization groups and other pre-competitive industry working groups.
- cooperating with the Consortium for Battery Innovation (CBI), initiated and technically leads a series of technical expert workshops since 2017 (Automotive Lead Battery Advancements, ALBA).
- International Lead Award 2022

Eckhard Karden September 2024

Eckhard Karden ELBC September 2024

Content

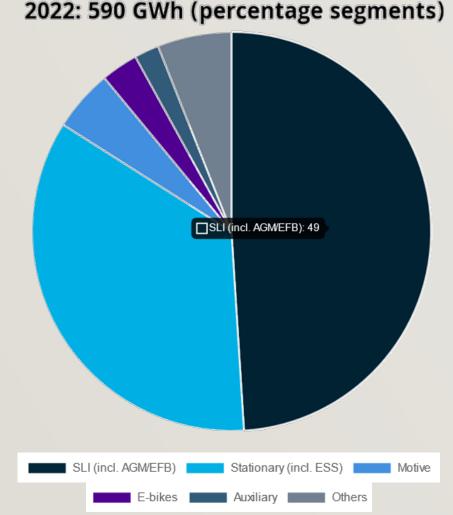
Lead batteries – essential for every car?

- Automotive absorbs half of global lead battery production
- OEM expert survey expert views on lead battery use

Global automotive industry trends and their implications for 12V batteries

- 1. Low-level powertrain electrification (micro-hybrid): Dynamic Charge Acceptance = DCA
- 2. Full electric and higher-level hybrid powertrains: Auxiliary and backup batteries
- 3. Autonomous & assisted driving: "ASIL" reliability requirements cascaded to 12V battery ...
- 4. ... or alternative architectures may provide ASIL without 12V (lead) battery
- 5. OEMs will need stronger & pro-active support from lead battery supply base

Discussion & Outlook


Automotive ≅ 49% of global lead/acid GWh production

CBI aims to understand customer / OEM needs

- downsizing (Ah·12V = Wh per vehicle)
 - \circ diesel phase-out (EU)
 - $\,\circ\,$ BEV: no starter, recharge while parked
- alternatives discussed
 - $_{\odot}$ 48V only distribution system
 - \circ battery-less 12V from dc/dc converter?
 - o 12V Li-ion
- technology challenged
 - lead ban? (EU)
 - o diagnostics for ASIL?

pre-competitive cooperation opportunities in a mature commodity industry

- standardization: sizes, terminals, test procedures, ...
- research collaboration (CBI), technology workshops (ALBA)
- OEM guidelines (e.g., sizing & charging in BEV)
- CBI SSOF WG: generic methodology and documentation for Functional Safety assessment

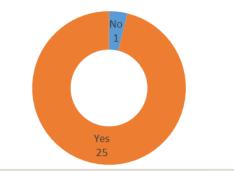
Eckhard Karden ELBC September 2024

CBI OEM expert survey

... in 2 parts, June/July 2024

- OEM experts were approached by suppliers
- most participants from China, Europe, Japan
- responses are strictly anonymous

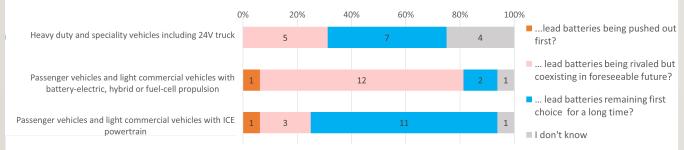
26 battery experts (power supply)


- Most OEMs expect lead batteries to stay ...
- ... yet half of them are exploring alternatives (not necessarily for full volume & model range)
- highest confidence for ICE cars and 24V truck
- coexistence / competition for BEV

14 ASIL/BMS experts (architecture etc.)

- most safety concepts use 12V battery for ASIL
- most of these use lead battery (not only AGM)

More results: CBI webinar in October


33. Does your company plan to keep using lead batteries for the foreseeable future?

41. Is a research team at your company actively working on a solution to replace the 12V lead battery?

55. Are there market segments or regions for which you foresee...

Eckhard Karden ELBC September 2024

Eckhard Karden

ELBC September 2024

Content

Lead batteries – essential for every car?

- Automotive absorbs half of global lead battery production
- OEM expert survey expert views on lead battery use

Global automotive industry trends and their implications for 12V batteries

- 1. Low-level powertrain electrification (micro-hybrid): Dynamic Charge Acceptance = DCA
- 2. Full electric and higher-level hybrid powertrains: Auxiliary and backup batteries
- 3. Autonomous & assisted driving: "ASIL" reliability requirements cascaded to 12V battery ...

Market and technology trends

for 12V batteries in electrified vehicles

- 4. ... or alternative architectures may provide ASIL without 12V (lead) battery
- 5. OEMs will need stronger & pro-active support from lead battery supply base

Micro-hybrid: shallow cycling and DCA

micro-hybrid = stop/start and regenerative braking for 12V loads

- > emerging markets at least: CAFE or CO₂ mandates will require low level hybridization for entry-level (and mass market?) vehicles for guite a while
 - mandates, criteria, incentives vary by country or region \rightarrow technical solutions (el. machine, strategy, storage system) to be optimized!
 - 12V micro-hybrid is offers limited fuel & CO₂ savings at lowest cost per gCO₂/km

background on 12V brake energy recuperation

- □ 1 g/km per approx. 5A average alternator load at 14V (rule of thumb). engine-native loads (NEDC, WLTP) 15±3 A \rightarrow saving potential 3 gCO2/km. (actual savings only 0.8...1.5 gCO2/km, limited by DCA, alternator, kinematics).
- \Box real-world loads typically 25...60 A \rightarrow savings realistically 3...5 gCO2/km
- □ With 150A alternator and perfect storage device, an average 12V load of 14...27 A is supplied CO₂-free (for deceleration 8...15% of trip time \rightarrow avg load 8:92...15:85 = 0.09...0.18 fold avg recup. current)
- □ for higher 12V loads additional savings may be achieved by scheduled generation (min incremental CO₂)
- Linematics: alternator torque has to be limited at low (engine or vehicle) speed

EFB+C = Enhanced Flooded Battery with high Dynamic Charge Acceptance (DCA)

- technology available, proven in EU mass market and hot climate taxi fleets
- may be improved further toward 2-3 A/Ah?

Eckhard Karden ELBC September 2024

Market and technology trends for 12V batteries in electrified vehicles

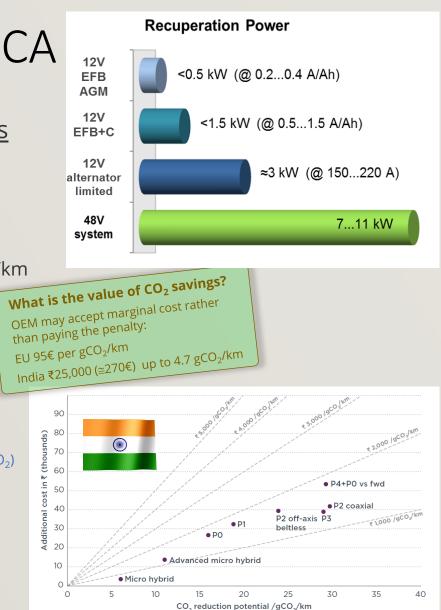


Figure 6. DMC cost of 48V hybrids with respect to total CO, reduction potential for a gasoline vehicle in 2025 on the NEDC cycle. All systems use 15 kW motors except micro and advanced micro hybrids.

(spusn 70

£ st in ₹

Addition

50 8

40 ē

30

20

202

Deo,

2 What is different for 12V batteries in BEV?

no more engine start required	cold-cranking current (CCA) test & sizing methods become obsolete	pulse-power characterization (PPC) test & PPC-based sizing, battery design for 9-10 V _{peak}
no more alternator but dc/dc: recharge possible at any time	"airport parking" etc. use cases & capacity sizing methods become obsolete	optimize charge recovery (to be defined and tested – IEC), revise OEM charging strategy
no more engine-bay packaging	heat exposure (slightly) reduced → high temp durability requirements may be relaxed?	water loss, corrosion, 75°C: cf. trunk installations
functional safety requirements (even for modern ICE vehicles)	hardware reliability & battery monitoring gain relevance	update supplier FMEA , SSOF monitoring & verification, revise service strategy
battery downsizing, while loads often increased	expect early failures due to high throughput and/or undercharge/sulfation	realistic throughput-based sizing , energy management : reduce loads and/or supply out of dc/dc

Eckhard Karden ELBC September 2024

2 Requirements for auxiliary & backup batteries

performance

- pulse power: PSOC, U_{min} ~9 V, peaks 0.2 ... 0.5 CCA
- charge recovery: downsizing, recharge in key-off, ASIL
- energy: downsizing 60...80 Ah \rightarrow 30...60 Ah \rightarrow 15...40 Ah ?

durability

- auxiliary: cyclic & PSOC (variable per application often demanding)
- backup: high SOC, cycling only comparable to classic SLI
- high temperature: comparable to classic SLI in trunk

system integration

• low-cost part but sizing, charging, load mgmt., monitoring need attention

Standardization can enable efficient commodity solutions

- IEC 60095-8 (CD): new tests for pulse-power characterization (PPC), charge recovery (CR), may become a template for OEM specifications and guide product design for 9V, CR, ...
- sizing tools and charging recommendations may be added as informative annexes
- Should sub-30Ah sizes be standardized?

Eckhard Karden	
ELBC September	2024

peak loads: typical values	chassis Ioads	cold cranking
current	70 200 A	300 1000 A
(test) duration	1 5 s	30 150 s
min. battery voltage	8 10.5 V	6 7.2 V
SOC	full operating range	high (test at 100%)

Automotive mass products do not require the best technical solution.

They require an affordable solution that is **good enough**. ALBA 2024 recap

2 How (early) 12V batteries in XEV fail

ADAC

12V battery: no.1 breakdown "cause" in BEV

- o German ADAC roadside-assistance statistics for 2~3 years old vehicles
- similar R/1000 due to (flat or defect) 12V battery in BEV as in ICE, while overall R/1000 (including powertrain, tires etc.) are lower for BEV

Leoch

Teardown analysis of >1100 field-returned BEV 12V batteries

- OEM A: AGM JIS B21 (mostly in trunk, mostly central China, built 2019-22) 341#
- OEM B: FLA JIS B20 (mostly underhood, mostly southern China, b. 2020-23) 794#
- o PAM softening dominates in both populations

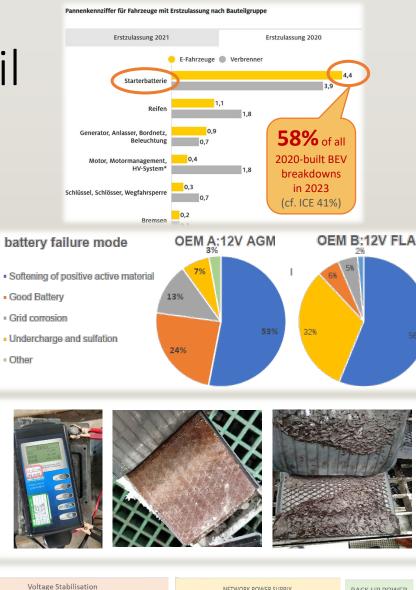
Camel

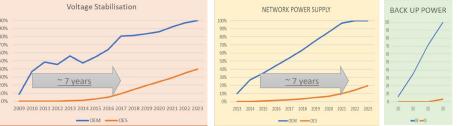
AUX battery failure mode analysis for NEV (new energy vehicles)

- o passenger car BEV: (1) misjudgement, (2) sulfation
- electric bus: (1) PAM softening and wear

EastPenn

OEM vs. OES sales for 3 auxiliary & backup AGM applications


• good energy management can achieve >5~7 years field life (insignificant OES sales)


Summary

AUX batteries too often fail by undercharge or undersizing

- o sulfation dominates despite dc/dc recharge would always be available
- o PAM wear indicates excessive cycling often battery downsized & loads high
- \circ $\;$ OEM engineers overestimate effects of corrosion and water loss

Eckhard Karden ELBC September 2024

Content

Lead batteries – essential for every car?

- Automotive absorbs half of global lead battery production
- OEM expert survey expert views on lead battery use

Global automotive industry trends and their implications for 12V batteries

- 1. Low-level powertrain electrification (micro-hybrid): Dynamic Charge Acceptance = DCA
- 2. Full electric and higher-level hybrid powertrains: Auxiliary and backup batteries
- 3. Autonomous & assisted driving: "ASIL" reliability requirements cascaded to 12V battery ...
- 4. ... or alternative architectures may provide ASIL without 12V (lead) battery
- 5. OEMs will need stronger & pro-active support from lead battery supply base

Discussion & Outlook

Eckhard Karden ELBC September 2024

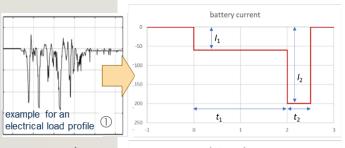
3 Lead batteries can support Functional Safety.

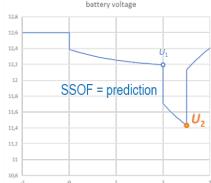
The challenge

- Failure of a 12V battery to provide power may affect safety of vehicle operation.
- Vehicle manufacturer performs systematic safety analysis (ISO 26262: Automotive Safety Integrity Level = ASIL A/B/C/D).
- Depending on power-supply topology & strategy, battery contributes to back-to-safe scenario.

Lead batteries are in a good position

- mature technology, proven in use (>100 years mass production for SLI), cost-efficient
- o very reliable, abuse-tolerant, no cascading failure mechanisms, other technology than traction


Supply base to provide highly standardized off-the-shelf solutions!


- lead battery (cell stack): mostly documentation needed low probability of sudden faults
- monitoring: OEMs need (make or buy) robust indication of SSOF = safety state of function

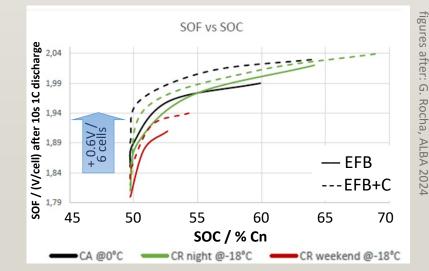
Collaboration is key – facilitated by pre-competitive CBI SSOF working group

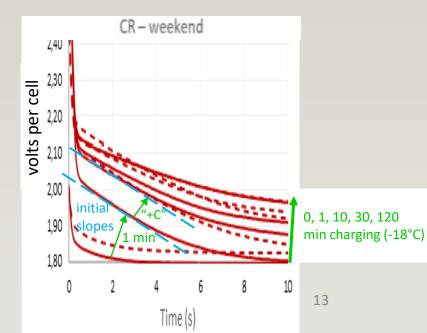
- o battery specification & quality: coordinated with IEC TC21 (60095-8)
- o battery monitoring system (BMS): together with sensor suppliers and vehicle OEMs
- o documenting the state of the art, providing application guidelines

Eckhard Karden ELBC September 2024

3 Transient SOF Recovery: Open for research (ALBA 24→25)

observations


- SOF recovers to nominal or better performance when only few% C_n recharged at all temperatures
- NAM variation (high DCA) may accelerate this initial SOF recovery
- initial voltage slope: pseudo-capacitive pos electrode polarization
- pos electrode potential after dch duration ~10s (~0.3% C_n) is still elevated as a function of recharged Ah

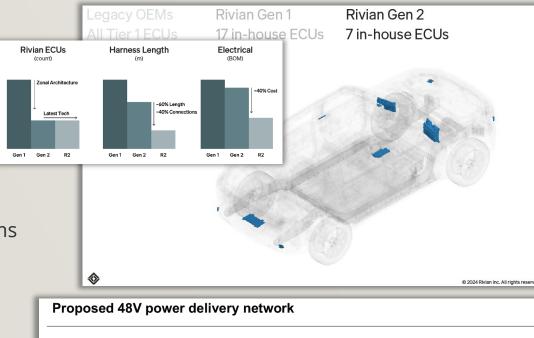

more data / systematic characterization needed

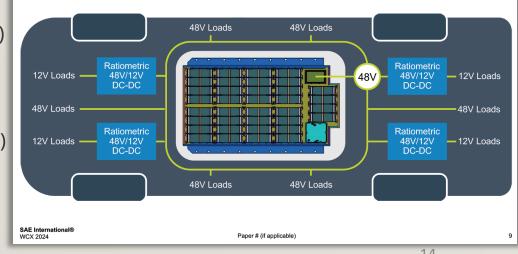
- hysteresis: SOF "decay" during rest, low-rate discharge, microcycling?
- quantitative description: what determines initial slope and later plateau?
- prediction model & observer for in-trip short-term SSOF monitoring

dedicated optimization of recipes and designs

- accelerate initial SOF rise (similar changes as for DCA? start at NAM?)
- maximize SOF after rest or pre-discharge (start at PAM?)
 - NB: many ASIL cases require 2-step profiles = base load + peaks(s)

Eckhard Karden ELBC September 2024


Power supply without 12V (lead) battery?


Zonal archictectures – proposed for "software defined vehicles" (SDV)

- o all software runs on a few, OEM-owned central controllers
- o announced by Tesla (CyberTruck) and Rivian
- may go along with 48V-only distribution and zonal step-down conversion to any voltage as needed: no more 12V batteries?
- o Such 48V-only architectures are an option for BEV-only platforms
- Next 3-5 years: Will mainstream BEV flip to 48V-only?
 Platform decisions will not depend on battery technology.

Other options for 12V batteries

- entry & volume segments: likely to stay lead (flooded, EFB or AGM) for auxiliary, but may not always supply ASIL functions from it.
- Li-ion (most likely, LFP) 12V? not an attractive business proposition to traction battery makers (<0.5 vs. >50 kWh per car)
- Na-ion may be competing in the long term (again, for traction first)
- redundant dc/dc converters without 12V storage? most OEMs see reliability issues (vehicle access etc.)

Eckhard Karden ELBC September 2024 Market and technology trends for 12V batteries in electrified vehicles

14

Content

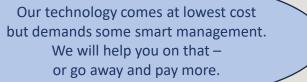
Lead batteries – essential for every car?

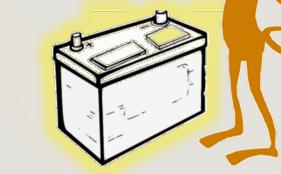
- Automotive absorbs half of global lead battery production
- OEM expert survey expert views on lead battery use

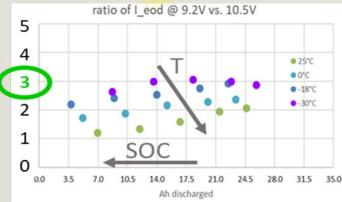
Global automotive industry trends and their implications for 12V batteries

- 1. Low-level powertrain electrification (micro-hybrid): Dynamic Charge Acceptance = DCA
- 2. Full electric and higher-level hybrid powertrains: Auxiliary and backup batteries
- 3. Autonomous & assisted driving: "ASIL" reliability requirements cascaded to 12V battery ...
- 4. ... or alternative architectures may provide ASIL without 12V (lead) battery
- 5. OEMs will need stronger & pro-active support from lead battery supply base

Discussion & Outlook




Lead battery expertise at OEMs


- o new BEV-only companies do not have decades of "starter" experience
- legacy OEMs tend to sideline classic power-supply departments during BEV and ASIL decisions, lead battery expert positions are not backfilled
- Expect OEMs to be(come) receptive for advice and technological solutions!

Examples for pre-competitive support areas

- CAE tool: PPC-based sizing (CCA, capacity) based on (SOC, T) ranges → min. voltage allowance is much more sensitive than max. current!
- CAE tool: realistic throughput estimation for battery selection & sizing
- charging guidelines based on experience and experimentation: float or charge-as-needed? optimize voltage transients (slow ramps)? ...
- other guidelines for battery and 12V-system operation specifically for BEV: load control & supply, minimize time at low SOC, ...
- o robust SSOF monitoring: proof of concept for short-term observers

example: same 35 Ah battery delivers 2-3x higher current at 9.2V compared to 10.5V (low SOC, low temp)

Lead battery suppliers should pro-actively support battery application and system integration at OEMs. Standardization and pre-competitive industry working groups can be instrumental.

Discussion & Outlook

Automotive industry mega trends

- Powertrain electrification: DCA for emerging markets! Charge recovery and design-for-9V for BEV! Optimize auxiliary and backup battery designs!
- Driver assistance, autonomous driving, software-defined vehicle: Demonstrate feasibility of ASIL compliance! Let's not make 48V-only a self-fulfilling prophecy.
- OEM lead battery expertise, on average, is dwindling:
 Assume a pro-active role as technology supplier! Offer "authoritative" design tools & guidelines!

Collaboration is key for a mature commodity industry facing technology challenges

- Standards should guide OEM specifications. New application-driven test methods are underway: High-Temperature Endurance HTE (EN 50342-1), Pulse-power characterization PPC & Charge Recovery CR (IEC 60095-8).
- Standardization of sub-30Ah auxiliary & backup battery sizes should be addressed next.
- Industry working groups should collect application rules and develop engineering tools for power supply engineers.
 CBI can provide a pre-competitive framework.
- Battery monitoring for Functional Safety should be demonstrated (proof-of-concept) to guide OEM demand.
 CBI SSOF database with logged battery data under realistic operating conditions is a bootcamp.