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+ -Oxygen Reduction Reaction promoting Ostwald Ripening of PbSO4 Crystals 

at NAM Electrode Surface

Dr. Eberhard Meissner

– Battery Specialist –

19th European Lead Battery Conference 2024

+ -

Oxygen Cycle in Lead-Acid Batteries:   Implications from 
Inhomogeneous Oxygen Reduction Reaction at Negative MassPb + H2SO4 →  PbSO4 + 2 H+ + 2 e-

PbSO4 + 2 H+ + 2 e- →  Pb + H2SO4 

4 H+ + 4 e- → 2 H2↑

O2 + 4 H+ + 4 e- → 2 H2O 

“Negative materials after formation,…”;  
from:  Manfred Gelbke, Rainer Wagner; 
Moll Batterien, “Batteries for Micro-Hybrid 
Application”, 14ELBC, 2014

10 m

A fresh look at the Negative Active Material:  three types of electrochemical 

reaction occurring simultaneously in the same location  

Pavlov et.al., J. Power 

Sources 242 (2013) 380 

2.5 m

Papazov et.al., J. Power 

Sources 113 (2003) 335 

Fig. 16:  .. large caverns 

(encircled zones)

-
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electrochemical NAM reactions - simultaneously in same location 

• NAM Main Reaction

[Ia] Pb  +  H2SO4    PbSO4 + 2 H+ + 2 e-

[Ib] PbSO4 + 2 H+ + 2 e-
   Pb + H2SO4

• Hydrogen Evolution  H2↑

[II] 2 H+ +  2 e-
    H2↑

• Oxygen Reduction  O2↓

[III] O2 +  4 H+ +  4 e-
   2 H2O

• NAM Surface Capacitance (charge/discharge)

Helmholtz Double Layer (solid/liquid interface) 

• Oxidation of organics and carbon
pasting paper, additives (fibres, expander components, …)

PHYSICAL Reaction

CHEMICAL Reactions

ELECTROCHEMICAL

cathodic 

cathodic 

cathodic 

anodic 

cathodic: e- acceptance 

e‘lyte PAMNAM

+-

EFB
workshops

cf. Appendix  for References to previous Conference Presentations  [P1 - P16],  further [References], Tables 

cf. e.g.  [P14], [P15], Tiedemann, Newman J. Electrochem. Soc. 122 (1975) 70

ALBA
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Motivation for “Fresh Look” at NAM  …

Narratives around (textbooks, papers) not coping with experiments 

a)  H2 evolution at NAM only upon overcharge [1]

b)  O2 reduction at NAM only upon overcharge [2] 

c)  O2 reduction at NAM only with VRLA [3]

d) excess NAM capacity in VRLA, for PAM to go into overcharge first [4]

e)  “thin liquid film layer” on geometric surface of NAM [5] in VRLA

f ) “forced O2 gas feed to NAM pores”  - pressure-injected, as an 

enabler for O2 reduction through “thin liquid film layer” [6]

NAM self discharge ! [11]

underpressure in VRLA upon stand ! [12] [P9,P10]

O2 cycle with flooded known since ~1960 [13] [P1,P5,P12]

fine NAM pores completely filled with 

e‘lyte; “liquid film“ in wide NAM pores 

NO pre-requisite for O2 reduction

from:

JPS 209 (2012) 289-294  ≈ 

Elektrokhimiya 19 (1983) 200-204

from:   

Encyclopedia of Electrochemical 

Power Sources, Elsevier, 1st Ed., 2009

SECONDARY BATTERIES –

LEAD–ACID SYSTEMS  - Overview

applies for SEALED Ni/Cd, 

but NOT for VRLA [14]

f)e)

partial pressure of O2 in AGM separator 

<< capillary pressure in fine NAM pores 

NAMAGM

NAMAGM
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Motivation for “Fresh Look” at NAM:  narratives contradicting physical basics

from   Encyclopedia of Electrochemical Power Sources

SECONDARY BATTERIES – LEAD–ACID SYSTEMS - Overview ,   Elsevier, 2009

~10nm
“Film Thickness“

2)   ref. source = ?

VRLA: “Electrolyte Film“ 

@ geometrical interface 

PAM,NAM / separator ?

bidirectional 

“arrows“  = ?

3) w/o explanation

1) correct Reference =  “Nelson (1990)“

2) there:  Ref. for “Film Thickness“ is 

           “A.Salkind, unpublished data“

3) NO arrows in orig. paper [7], cf. [15]  

1) Ref. does not exist

from  J. Power Sources 

      4)   209 (2012) 289-294

both papers: Views on VRLA from 1980ies !  
inspired from SEALEAD  Ni / Cd  CELLS

N.B. truely sealed: water is stable with Ni/Cd  (Uo = 1.2 V)   

JPS 209 (2012) 289 

  much reproduction from 

   4)  Elektrokhimiya

        19 (1983) 200-204

O2 :  “ fine-jet flow ...

 gas .. excessive pressure 

p ≥ capillary pressure 

in NAM pores “   ?

NAMAGM NAMAGMPAM

~100nm
f)e) NAMAGM



Eberhard Meissner   — 19 ELBC 2024, 16-19 September 2024, Milan, Italy5

+ -
negative active material

NAM:     ’Sponge Lead’ 

(+ additives, PbSO4)

Tab.1:  NAM characteristics symbol typ. values (est‘d)

Pb spec. density  (Pb) 11.3 g/ml

NAM apparent density  (NAM) ~ 4 g/ml

NAM porosity p ~ 60 vol%

NAM pore radius R ~0.1 .. 1 .. ~10 m

NAM tortuosity factor  ~ 1.6

NAM spec. pore volume Vpor ~ 0.15 ml/g

NAM spec. pore surface area Apor ~ 0.3 m2/g

NAM Pb mass utilization (@nom.cap.) m.u.(Pb) ~ 8 g Pb/Ahnom

e‘lyte PAMNAM

+-

Fig. from [P4], after D. Pavlov, Lead-Acid Batteries, Elsevier 2011

PAM Fig.10.19(a), p.466,  originally from [JEcS 133 (1986) 241]

NAM data included, converted from data taken from

Fig.11.12, p.493,  originally from [JEcS 121 (1974) 854]

PAM pores

0.02 .. 0.1 ..1m

0.1 .. 1 .. 10m
NAM pores

Fig. 10.19(a); p.466

Fig. 11.12; p.493

NAM and PAM pore size distribution

• porous metallic structure  

• open micro- and meso-pores
NAM much wider pores than PAM

• high internal surface area

• high electrical conductivity
 a perfect substrate 

for electrochemical reactions to take place !

Fig. from: Pavlov et.al., 

J. Power Sources 7 (1981) 153

cf. [P4]

free of e‘lyte 

with VRLA:
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Reactions at NAM:   Pb/PbSO4 ;  PbO2/PbSO4 ;  H2 ;  O2 ;  O2↓

[III] O2↓ reduction at NAM possible whenever  - < +1.23V

O2↓ when reaching NAM

cf.  D.Berndt, Maintenance-Free Batteries; 2nd ed., Wiley New York 1997; Chap.4

D.Berndt and U.Teutsch, J. Electrochem. Soc. 143 (1996) 790-798

0

1

-0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

grid corr.

REC

Water Stability (1.23 V)

DIS DIS REC

H2 evolution

H2 oxidation

O2 evolution

O2 reduction

Potential vs. SHE [V]

PbO2/PbSO4 

Equilibrium
Pb/PbSO4 

Equilibrium

~ -0.34V ~ +1.80V0.0V

Positive ElectrodeNegative Electrode

Hg/Hg2SO4 

Reference Electrode

+1.23V

SHE

(‘standard hydrogen‘)

Reference Electrode

 NO electrical overcharge required for [II] and [III] 

(reactions may proceed also during rest and discharge periods)

Water electrolyzed when  U > 1.23 V:   H2 at NAM +  O2 at PAM      

[II] H2 evolution at NAM possible whenever  - <    0.0V

cathodic:  e- acceptance anodic:  e- release

i.e. always, 

as Pb/PbSO4 potential < ≈  -0.3 V

cf. [P5]

b)a)

H2 O2
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- equilibrium potential o
i 

- polarisation   i 

- non-linear characteristic  i i  = f i ( i , Temp, pressure, conc i, time, …)  

     conc. of species involved conc i 

i

i i

o
i Electrical Equivalent Circuit

  (reactions i = 1, 2, 3)

electrochemical NAM reactions  electrical equivalent circuit

• NAM Main Reaction

[Ia]      Pb  +  H2SO4   PbSO4 + 2 H+ + 2 e-

[Ib]   PbSO4  +  2 H+  +  2 e-
   Pb + H2SO4

• Hydrogen Evolution  H2↑

[II] 2 H+ +  2 e-
    H2↑

• Oxygen Reduction  O2↓

[III] O2↓ +  4 H+ +  4 e-
  2 H2O

e‘lyte PAMNAM

+-

cf. [P14]
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reactions at same location, simultaneously   ‘connected‘ in parallel

 
pos

i celli posi neg
R

Positive

Electrode +

o
1   ≠ o

2 ≠ o
3      1  ≠ 2  ≠ 3       

PAM:  +

f 1  ≠ f 2  ≠ f 3 ;     

 conc1 ≠ conc2 ≠ conc3  (different species involved)

for each NAM reaction:   individual function f i  for charge-transfer 

  i =  − - o
i ;     i i = f i ( i , Temp, pressure, conc i, time, …)

 
neg

e‘lyte, 

 grids, …

e‘lyte PAMNAM

+-

Reactions ‘connected‘ 

     in parallel

i neg =  i1 + i2 + i3 . .   

= i cell
. . 

i cell =  i neg =  i pos Battery:    U = ( + -  - ) + R*i cell

e.g. Self Discharge:  i cell = 0  = i neg  =  i pos .

      BUT possibly  i 1 ≠ 0 ;   i 2 ≠ 0 ;  i 3 ≠ 0  !  . 

 − : a mixed potential 

 from 3 reactions in parallel ! 

   characteristics of these 3 

     decide about i1 , i2 , i3. , 

NOT the external current i cell 

1

i1

o
1 

2

i2



3

i3



o
2

o
3

Main Reaction

O2 ↓

H2 ↑

-
i cell

NAM:  −

cf. [P14]

cf. next page (backup)

b)

a)
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. 

. 

. NAM ‘self discharge’ (i.e. while no external current flow:   i cell = 0 , i.e. i neg = 0 ) 

i neg

 
negi cell = 0 

(a) H2 [II]

(b) O2↓ [III]

H2 : i1 = - i2 < 0
[Ia]   Pb  +  H2SO4    PbSO4 + 2 H+ + 2 e-

[II]    2 H+ +  2 e-
   H2↑

====================================

Pb  +  H2SO4    PbSO4 + H2↑

O2↓ :   i1 = - i3 < 0
2x [Ia]  Pb  +  H2SO4    PbSO4 + 2 H+ + 2 e-

[III]  O2 + 4 H+ + 4 e-
   2 H2O

====================================

2 Pb + 2 H2SO4 + O2    2 PbSO4 + 2 H2O

N.B. reactions  (a), (b)  may proceed at any time, i.e. 
ALSO  upon external current flow  i cell ≠ 0 ! .

 

ONLY condition: i cell = i neg = i1 + i2 + i3

i neg = 0 

NAM disch. [Ia]

i cell = 0  = ineg = i1 + i2 + i3 .       
(a) spontaneous evolution of  H2 i2 > 0

e-

↓

e-

↓

cf. [11, 12]

NAM is discharged    i1 < 0 Pb    PbSO4     by 

(b) reduction of O2↓ i3 > 0
evolved @PAM, stored in e’lyte [P1,P5,P9,P12], [10]

1

i1 < 0

o
1 

2

i2



3

i3



o
2

o
3

Main Reaction

O2 ↓

H2 ↑

-
i cell =0

NAM:  −

cathodic

cathodic

anodic

i cell = 0

i1 < 0
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any Interactions among the 3 cathodic reactions ?

Reaction Rates for [I], [II], [III] determined by actual   - 
 ‘electrochemically‘ independent:   different  

o
i , 

           same   - (mixed potential) for [I], [II], [III]

any further Interactions ?    e.g.  ‘physical‘, due to 

 1) Competition for Educts  (‘short resources‘)     NO preferences among [Ib], [II], [III]

 2) Transport Limitations   only individually (dissolved Pb++, O2 , resp.)  NO competition among reactions

H2 gas volume transport  2 times 

 higher than diffusing O2 gas volume 
(ideal case: PAM and NAM recharged symmetrical)

2 times

[III][Ib]

[P1, P5, P6]

cf. next page 

(backup)

3) Interaction among Gases:    H2↑ [II],    O2↓ [III] 

H2 transport (vol/Ah vs. O2 vol/Ah) in opposite direction to sparse supply by O2 diffusion !

  H2↑ and O2↓ at same location:  inner surface of NAM pores;   higher H2↑ volume /Ah

[I]  Main Reaction

 [II] Hydrogen Evolution 

[III] Oxygen Reduction

EXAMPLE: 

e.g. 50% efficiency in Oxygen Cycle 

  e.g. (flooded) EFB battery in 

    micro-hybrid driving 

long-term average 

PAMNAM

Sink for O2

c(O2)≤cs

Sink for H2

Source
of H2 Source

of O2

c(H2)≤cs

Sink

for O2 NO Sink 

for H2

charge [Ah] transfer

[16] 50%

50%

50%
50%

[15]

PAMNAM

Sink for O2Sink for H2

Source
of H2

Source
of O2

Sink

for O2
NO Sink 

for H2

gas volumes [L] involved

[16]
50% 50%

50%
2*50%

c(H2)≤cs c(O2)≤cs

[15]

2 times
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1) NO Competition for Educts !     2) individual Transport Limitations only

• NAM Main Reaction

[Ib]   PbSO4  +  2 H+  +  2 e-
   Pb + H2SO4

• Hydrogen Evolution  H2↑

[II]                     2 H+ +  2 e-
      H2↑

• Oxygen Reduction  O2↓

[III]        O2 +  4 H+ +  4 e-
    2 H2O

any charge transfer of 

   one electron   e-    consumes 

 one proton  H+ from e‘lyte

 1) NO preferences among [Ib], [II], [III] 

 same impact for all cathodic reactions 

       obs.: H+ is abundant in pore e‘lyte:   [c(H+)] > 1 mol/L    

obs.: upon charge transfer of one electron e-,  ion migration through cell electrolyte supplies 0.76 H+

and 0.24 HSO4
- ions to NAM pore e‘lyte  (Hittorf’s Transference Numbers:   +H = 0.76,  –HSO4 = 0.24)

2b) O2 Reduction [III] consumes dissolved  O2 (supplied from PAM via bulk e‘lyte)  [c(O2)] < 0.65 ∙10-3 mol/L

 (poor solubility, long diffusion distance, low O2 evolution rate)

2a) NAM RECharge [Ib] consumes dissolved  Pb++ (supplied from dissolving PbSO4) [c(Pb++)] ≈ 6 ∙10-6 mol/L   

(poor solubility, diffusion distance) 

 2) Transport Limitations of [Ib] , [III]  due to diffusion of dissolved  Pb++ and  O2 , resp.

 -  but for resp. species individually:    NO competition among reactions ! 

cf. [P2,P3,P7]

cf. [P1,P10,P12]

cf. [P4]

cf. [P4]
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3) Gas Interaction in NAM ?  

• Hydrogen Evolution  H2↑

[II]  2 H+ +  2 e-
   H2↑ 

• Oxygen Reduction  O2↓

[III]   O2 +  4 H+ +  4 e-
   2 H2O

H2 gas, O2 gas:    where ?   when ?   how much ?

PAMNAM

x

e‘lyte

O
2

c
o

n
c
.

cs

co

sep.

Source of O2

c(O2) < cs

Sink for O2

c(O2) → 0

[16]

H2

O2

O2

NAM

H2

NAM

pore

E‘lyte

Current Density 

i [A/m2]

O2

?

“
g

ri
d

“

X

c(O2)

<<10-3

mol/L
depth of penetration 

X ≈ 0.1 mm

O2↑ excess e-

O2

storage
tankthrottle O2 sourceO2 sink

O2

 O2

+-

CR

capacitorresistorground current 
source

O2 generated inside PAM pores (@ fluctuating rate) 

         released to e‘lyte   p(headspace) =1bar / 1.1bar   

    p(O2) < 1bar,  c(O2) < cs (O2), 
 

O2 TRANSPORT LIMITATION to NAM 

      p(O2) << 1bar ;  c(O2) << cs(O2)  
 

   intermediate O2 storage [P1,P5,P9,P12], [10]

    smoothed diffusion supply to NAM surface
 

penetrating NAM: “O2↓ reduction is fast” [16]

    O2 cannot persist -  c(O2)  0  at NAM

    O2 low penetration depth X into NAM  

     c(O2)→ 0 in deeper layers of NAM 

 always  p(O2) ≤ 1bar;  c(O2) ≤ csat (O2)

  p(O2) < 1bar;   c(O2) < csat (O2)

 c(O2) ≈ 0  in deeper layers of NAM 

 c(O2)  0  at NAM    

cf. [P5]

cf. [P5,P9]

cf. [P10,P12]

pheadspace ≈1bar 
(VRLA≈1.1bar)

NAM
X

c(O2)

O
2
 c

o
n

c
.

PAM

csat(O2) csat(O2)

TRANSPORT 

LIMITATION

c(O2) Profile of c(O2)

cf. [P10,P12]
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3) Gas Interaction in NAM ?  

H2

H2

H2

H2

H2

H2

O2

O2
H2

NAM

H2

H2

H2

O2 diffuses into H2 bubbles  

 O2 diffusion is accelerated

H2

O2

H2

cmax(H2) = f(R)
at any place in NAM, 
 at any time: p(H2) >> p(O2) → 0 

         c(H2) >> c (O2) → 0 
csat(H2 ,O2)

O2 generated inside PAM pores (@ fluctuating rate) 

         released to e‘lyte   p(headspace) =1bar / 1.1bar   

    p(O2) < 1bar,  c(O2) < cs (O2), 
 

O2 TRANSPORT LIMITATION to NAM 

      p(O2) << 1bar ;  c(O2) << cs(O2)  
 

   intermediate O2 storage   [P1,P5,P9,P12], [10]

    smoothed diffusion supply to NAM surface
 

penetrating NAM: “O2↓ reduction is fast” [16]

    O2 cannot persist -  c(O2)  0  at NAM

    O2 low penetration depth X into NAM  

     c(O2)→ 0 in deeper layers of NAM 

 always  p(O2) ≤ 1bar;  c(O2) ≤ csat (O2)

  p(O2) < 1bar;   c(O2) < csat (O2)

 c(O2) ≈ 0  in deeper layers of NAM 

 c(O2)  0  at NAM    

cf. [P10, P12]

H2 generated in NAM pores, 
     ‘everywhere‘    @ fluctuating rate

  H2 abundant in NAM pores

 excess H2: bubbles may form

 a) bubble inside pores  (radius R):
 consider capillary pressure ! 

      p(H2) > 1bar ;  c(H2) > csat (H2)

capillary pressure  cmax(H2)= f(R)

   b) bubble outer surface / floating:  
        (after transport by diffusion)  

      p(H2) ≈ 1bar ;  c(H2) ≈ csat (H2) p(H2) ≈ 1bar ;  c(H2) ≈ csat (H2)

p(H2) > 1bar ;  c(H2) > csat(H2)

c(H2)

csat(H2 ,O2)

c(H2), c(O2)

X

c(O2) PAM

TRANSPORT 

LIMITATIONH
2
,O

2
 c

o
n

c
.

pheadspace ≈1bar 
       (VRLA≈1.1bar)

Profiles of c(H2), c(O2)
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Capillary Pressure increasing gas pressure in bubbles

gas in submersed bubble experiences

increased pressure vs. free gas !

pG
bubble =  pG

free + phyd + pcap > pG
free

> hydraulic pressure  phyd =  h ∙ (e’lyte) ∙ g 

 (e’lyte) ≈ 1.28 g/ml ;  g = 9.81 m/sec2 

> capillary pressure pcap =  2∙ (e’lyte) / R

surface tension   (e’lyte) ≈ 0.075 N/m

curvature of bubble  1/R,  R = bubble radius

 higher gas solubility near small bubbles !

 small gas bubbles (small R) may not be stable 

1. gas dissolved in e‘lyte ? always !        conc =  cL(H2), c
L(O2) 

2. gas in gas bubbles ?      partial pressure = pG(H2), p
G(O2)

gas phase pG
free

h R

pG
bubble = ?

gas bubble
 (free floating)

liquid phase equilibrium

small bubble:  high pG
bubble

   NOT stable   dissoves ! 

NO 

equilibrium

dissolved gas

cf. OSTWALD Ripening

  - small structures dissolve  [P2,P3, 

  - large structures grow            P7]

Table 2: cap. pressure + conc. of dissolved gas   cL(G) = f(R)

NAM pore size R ≈ pcap ≈ c(H2) ≈        e.g.   G = H2

free bubble 150 m 0.01 bar 1.01∙csat = 0.44 ∙10-3 mol/L

wide pore 15 m 0.1 bar 1.1∙csat = 0.47 ∙10-3 mol/L

medium pore 1.5 m 1.0 bar 2∙csat = 0.86 ∙10-3 mol/L

fine pore 0.15 m 10 bar 11∙csat =  4.8  ∙10-3 mol/L

typ. range 

of NAM pores, 

cf. Tab.1

cf. Tab.3 for material properties

(backup)

cf. [P8]

Henry‘s Law (gas) = H2, O2

cL(gas) = Hcp(gas) ∙ pG(gas)
cf. Tab.3 

(backup)
conc. cL of dissolved gas in liquid phase is 

prop. to partial pressure pG(gas) in gas phase 
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R

free bubble  

pG(H2) ≈ 1bar

when H2 bubble is constricted in a NAM pore: 

 pG(H2)   >   pheadspace  ≈1bar !

H2 bubbles with small R (high pG(H2)) not stable, 

unless conc. cL(H2) of dissolved H2 is high   

 1. temporary H2 bubbles in small pores dissolve
 

 2. dissolved H2 diffuses to wider pores and … 
  cf. OSTWALD Ripening of fine crystals !

 3.  … finally reaches NAM outer surface (free electrolyte) 
  

   4. ONLY IF  cL(H2) > cL
sat  at NAM outer surface, pG(H2) > 1bar  

      - non-constricted H2 bubbles (typ. R>≈150m) may form   

      - may detach from surface and rise to headspace 

5. ONLY THEN, H2 formed inside NAM may leave the cell 

Transport of H2 in NAM pore structure 

NAM

e‘lyte

R
constricted bubble  

pG(H2) >> 1bar

cf. electrodes in Electrolyzer [9]:  2 H2O    2 H2 + O2

H2 diffusion in porous H2 -evolving electrodes;   

     transport rate strongly enhanced by steep cL(H2) gradient 

     due to high pG(H2) in electrode interior 

pheadspace ≈1bar 
       (VRLA≈1.1bar)

little H2 evolution needed to establish high H2 conc. gradient:

Rough Estimation:     NAM pore volume  ≈1.2 ml/Ah *)    

  - dissolved H2 reaches saturation cL(H2)

already from 0,052 As/Ah *) electrolysis  

  - theoretically, NAM pores filled with H2 gas from 10 As/Ah *) 

      *) cf. material properties, Tables 1, 2, 3, 4  (backup)

net H2 transport
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cL(O2) of dissolved O2 low at NAM surface, 
   low partial pressure pG(O2)  <  pheadspace ≈1bar 

 O2 bubbles cannot form at NAM surface

   “forced O2 gas feed to NAM pores” impossible; 
no pressure-injected O2 gas supply through “thin liquid film” 

on NAM geometrical surface, to enable O2 reduction  

Diffusion of dissolved O2 from free electrolyte into 

  electrolyte-filled NAM pore network [P12]

impeded transport into NAM pore structure for O2↓ reduction 

However, if H2 bubble exist, O2 diffuses into bubble, 
    forming mixed H2 / O2 bubble (usually pG(O2) << pG(H2))

   O2 conc. higher: in gas phase ≈100x [mol O2 /L] vs. cL(O2)

   O2 transport in NAM accelerated: >106 faster 

Transport of O2 in NAM pore structure

H2 bubbles in NAM pore system may facilitate O2↓ reduction ! 
 effect expected to be especially beneficial in dynamic and PSoC battery duties:  low DoD, short REC phases

 when H2↑ and O2↑ evolution are not steady and synchroneous, but dynamic, alternating, short period

       O2↓ reduction of stored O2↓ [P1,P5,P9,P12], [10] continues upon Rest and DIScharge phases

pheadspace ≈1bar 
       (VRLA≈1.1bar)

N.B.  Low penetration depth X of O2 into NAM [P12]

coarse PbSO4 may accumulate at NAM surface / in cracks [P7,P10,P12]

imbalance of SoC(PAM) vs. SoC(NAM) [P5,P6]

f )

NAM

e‘lyte

R
constricted bubble  

pG(H2) >> 1bar

net H2 transport

diffusion of 

dissolved O2

R
free bubble  

pG(H2) ≈ 1bar 
pG(O2) << 1bar

impeded 

net O2 transport

cf. [P12]

cf. Tab.3 for material properties

(backup)
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1) largest NAM pores free of e‘lyte (≈ 10-15vol% of NAM porosity)

   a) ‘dry voids‘  R > Rcrit , at any time;   Rcrit ≈ 2-4 m 

     NO VACUUM:  gas phase, esp. H2 gas,  pG(H2) ≈ pheadspace

    b) ‘flooded pores‘  R < Rcrit   ‘crit. capillary pressure‘  pcap
crit ≈ 0.5 bar;

    ≈ 85-90vol% of NAM porosity flooded  (number-wise “nearly all pores“) 

     displacing e‘lyte would require gas pressure   pG >1.5 .. >10 bar !
   Difference vs. flooded:  gas-phase voids always present;  while H2 bubbles,

   formed at similar sites when H2 gas evolves with flooded, may dissolve again

2) largest AGM pores free of e‘lyte  (≈ 5vol% of AGM pores)

   ‘dry voids‘   R > Rcrit , at any time;   Rcrit ≈ 2-4 m ;   pcap
crit ≈ 0.5 bar

 H2 / O2 gas mixture; pG(H2) + pG(O2) < pheadspace + pcap(Rcrit)  pG < 1.5 bar 

  Difference vs. flooded:  while O2 evolve at PAM (RECharge), gas-phase voids 

   enhance O2 transport.  Higher O2 storage [Mol/L] in gas phase vs. dissolved (liquid) 

   max. pressure in gas-filled (H2/O2) AGM pores (‘large‘, R > Rcrit) too low 

      to displace electrolyte from liquid-filled NAM pores (‘fine‘, R < Rcrit) 

   “forced O2 gas injection into fine NAM pores” not possible

VRLA:  what makes the difference ?  

‘dry voids‘   a) facilitate O2↓ transport     when O2 evolves at PAM (RECharge),  cL(O2) may increase at NAM surface 

    in AGM   b) additional O2 storage capability [Mol O2 /L], cf. [10], Tab.3: O2 reduction also upon Rest and DIScharge

    VRLA effect especially beneficial in dynamic and PSoC battery duties   [P1,P5,P9,P12]

N.B.  Low penetration depth X of O2 into NAM [P12]
f )

    e‘lyte-filled fine NAM pore network impedes diffusion of dissolved O2 to ‘dry voids‘ in NAM:  

     diffusion distance >> ≈100nm, far more than just through a “thin liquid film layer” [3,5,6] !  

pheadspace ≈1bar 
(VRLA≈1.1bar)

H2

NAM
dry void  

pG(H2) 0 .. > 1bar

net H2 transport

diffusion of 

dissolved O2

H2 /

O2

AGM

impeded 

net O2 transport
cf. [P12]

H2 /

O2

R > Rcrit

95vol% 

flooded

R > Rcrit

ALSO with VRLA, e )

see Tab.3, backup

see Tab.3 , backup
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Summary

➢ NAM Main Reaction: [I] charge/discharge Side Reactions: [II] H2 evolution [III] O2↓ reduction
independent:  ONLY actual NAM potential  − defines about currents i i of main and side reactions 

Kirchhoff’s Law  i cell  = i neg  =  i(main) + i(H2) + i(O2↓)   defines  − Mixed Potential; NO CONTROL from external electrical current i cell

➢  H2 evolution and O2↓ reduction at any time, incl. Rest and DIScharge  stored O2 can be reduced ! 

➢ Capillary Pressure in constricted bubbles (NAM pore, AGM pore):   pG(bubble)  > pG(cell headspace) + pcap(R)

prevents e’lyte-filled fine NAM pores from being displaced by gas pressure from outside, also with VRLA

➢ VRLA ‘dry voids’:  no vacuum, but gas phase  (H2 or  mixed H2 / O2 bubbles, depending on operating phase) 

➢ O2↓ reduction is fast at NAM

sparse (diffusion-controlled) O2 supply 
 NO “pressure-forced O2 bubbles” penetrating liquid-filled NAM pore structure / “electrolyte film” 

➢ ‘dry voids’ (VRLA) and H2 bubbles (flooded) in NAM pore system may facilitate O2↓ reduction

➢ O2↓ storage  more time for O2↓ in dynamic operation, when H2↑ and O2↑ evolution not steady / synchroneous, 

 but alternating:  long-term PSoC duty, short REC periods, cf. [P1,P5,P6,P10,P12]  rate of O2↓ reduction less critical ! 

➢ additional O2 storage in VRLA ‘dry voids’ [10]: further benefit of VRLA in dynamic applications, reducing water loss 

 low conc. c(O2) < cs(O2) near / inside NAM structure

 “O2 gas bubbles“ cannot persist at NAM surface
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Takeaways       Dare to know ! 

➢ many narratives about LAB are based on historic views and interpretations  - often outdated [8]

- related to old cell designs  e.g. with old PbSb alloys:   i(H2) >>  i(O2↓)   in flooded design   

- valid only for float duty @ SoC100% (long-term constant-voltage)

- conclusions from experiments at unrealistic conditions,  e.g. excessive overcharge rates  …>0.1 A/Ah  [3a,b] 

- VRLA:  naive (incorrect) carry-over from gas-tight Ni/Cd cells  (= truly sealed, H2O stable, no H2 )

- VRLA:  improper target definition, e.g. capability for high O2 transport upon overcharge seen as primary target    

➢ assumptions / simplifications made, some explicitly, many implicitly
- stationary operating duty   (Ucell = const, i cell = const),  “long enough time t   “ 

- transients ignored    - internal reactions instantaneously equilibrated after change of external conditions

- fully charged: SoC100%;          assuming same SoC of PAM and NAM but cf. [P5] 

- assuming gassing to be stoichiometric (H2 : O2 = 2:1 vol)  and simultaneous at PAM and NAM but cf. [P9] 

BUT

➢ with modern cell designs (‘maintenance-free’, VRLA), ratio of parasitic reactions has shifted 

➢ with modern battery applications and duties (dynamic, PSoC), former times’ simplifications no longer apply

 conclusions made decades ago may misdirect today !   

➢ Lead-Acid chemistry and physics have not changed    - but WE have changed a lot in design and application

Immanuel Kant, 1784

(‘What is Enlighenment ?‘)

it‘s OUR responsibility to be sceptical:  check for plausibility and consistency of statements and conclusions ! 

    consider views / background of authors & state of knowledge at time of publication ! 
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NAM material characteristics

Tab.3:   Material Properties Symbol Value

spec.density Pbmet  (Pbmet) 11.3 g/ml

Molar gas volume (25°C, ideal gas) Vmol 24‘790 ml/mol

Faraday constant F 96‘485 As/mol

Surface tension of e‘lyte  0.075 N/m

Solubility of H2 in e‘lyte (p=1bar) cL(H2) 0.43 ∙10-3 mol/L

Solubility of O2 in e‘lyte (p=1bar) cL(O2) 0.65 ∙10-3 mol/L

Conc (all, ideal) gasses (gas phase) cG(gas) 41 ∙10-3 mol/L

Diffusivity of dissolved H2 in e‘lyte DL(H2) 3∙10-5 cm2/sec

Diffusivity of dissolved O2 in e‘lyte DL(O2) 0.8 ∙10-5 cm2/sec

Diffusivity of H2 in gas DG(H2) 1.6 cm2/sec

Inter-Diffusivity of H2+O2 gasses DG(H2O2) 0.74 cm2/sec

Diffusivity of O2 in gas DG(O2) 0.18 cm2/sec

TAFEL slope of H2 evolution ≈ -120mV/dek

TAFEL slope of O2 evolution ≈ +80mV/dek

Data at T ≈ 25°C;  e‘lyte = sulfuric acid, c ≈4 mol/L

H2: 

x100

Electrolyte Saturation:

 cell total (=overall)  ≈ 94vol%

    in AGM  ≈ 94vol% 

             in NAM  ≈ 87vol%

John Wertz, Jibo Zhang (Hollingsworth & Vose)

“Determination of Saturation values by Weight Calculations”

presented at CBI/CENELEC Workshop on Automotive Lead 

Battery Advancements (ALBA 2024), Paris, 12-13 Jun 2024   

after [P4]; data taken originally 

from [JEcS 121 (1974) 854]

0.1 .. 1 .. 10m
NAM pores

NAM Pore size distribution

pcap = 10 bar

pcap = 1 bar

pcap = 0.1 bar

pcap = 0.5 bar

cf. also https://doi.org/10.5194/acp-23-10901-2023

Rolf Sander, Atmos. Chem. Phys. 23 (2023) 10901–12440, 

“Compilation of Henry’s Law Constants (vers. 5.0.0) for water as solvent”

https://www.henrys-law.org

free of e‘lyte 

with VRLA:

for pcap values,

cf. Tab.2 

VRLA: e‘lyte-free pores 

  cf. Tab.2 for values of pcap

O2: 

x63

Ratio of gas conc. [mol/L] in gas phase vs. dissolved in e‘lyte:

 O2: x63    H2: x100

https://doi.org/10.5194/acp-23-10901-2023
https://www.henrys-law.org/
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NAM derived characteristics (calculated techn. values  –  typ. order of magnitude)

Tab.4:   derived Material Properties calculation calculated Value

NAM pore volume / Ahnom Vpor * m.u.(Pb) ≈1.2 ml/Ahnom

NAM pore surface area / Ahnom Apor * m.u.(Pb) ≈2.4 m2/Ahnom

NAM apparent volume utilization V.U.(NAM) m.u.(Pb) /  (NAM) ≈2.5 ml/Ahnom

NAM Pb volume utilization V.U.(Pb) m.u.(Pb) /  (Pb) ≈0.88 ml Pb/Ahnom

H2 gas evolution: vol. per charge equivalent Vmol /2F ≈462 mL H2 /Ah

Charge of H2 gas [Ah] possibly stored in NAM pores /Ahnom (p=1bar) ≈0.26% DoD ≈9.5 As/Ahnom ≈2.6 mAh/Ahnom

Charge of diss. H2 [Ah] in e‘lyte (p=1bar) cL(H2) * 2F ≈43 As/L ≈12 mAh/L

Charge of diss. H2 [Ah] possibly stored in NAM pore e‘lyte (p=1bar) ≈0.0015% DoD ≈0.052 As/Ahnom≈0.015 mAh/Ahnom

O2 gas evolution vol. per charge equivalent Vmol /4F  ≈231 mL O2 /Ah

Charge of diss. O2 [Ah] in e‘lyte (p=1bar) cL(O2) * 4F ≈62 As/L≈17 mAh/L

O2 gas evolution vol. per charge equivalent Vmol /4F  ≈231 mL O2 /Ah

Charge of diss. O2 [Ah] possibly stored in total cell e‘lyte     [10] ≈0.07 - 0.1% DoD ≈0.7 - 1 mAh/Ahnom

Data at T ≈ 25°C;  e‘lyte = sulfuric acid, c ≈4 Mol/L
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References to Conference Presentations addressing topics in this context, and some Key messages and caveats

[P1] E.Meissner @ Workshops “High-Temperature Durability Tests for Advanced Lead–Acid 12-V Batteries” 

- Kloster Eberbach, Gerrnany, Jan 2017  - Alcalá de Henares, Spain, May 2018   - Bruges, Belgium, May 2019   - virtual, Nov 2020   - Bergamo, June 2022

- Oxygen transport and storage in flooded cell, [Lit. from 1950-1990ies], intermediate O2 storage buffer reduces water loss in PSoC operation  

[P2] E.Meissner, “Origin of the DCA Memory Effect:  Rôle of Ostwald Ripening and re-crystallization”;  Presentation #515 at EFB Virtual Workshop *), Nov. 2020 

- Ostwald Ripening may change structure and distribution of PbSO4 within porous NAM mass

[P3] E.Meissner, “NAM Classics:  is low DCA caused by Ostwald ripening ?”,   Presentation #501 at EFB Virtual Workshop *), Nov. 2020 ;    

- consequences from Ostwald-Froehlich Relationship and Lifshitz-Slyozov-Wagner (LSW) Theory, applied to PbSO4 in NAM;  Modelling of NAM Recharge; 

- Recommendation to design a fine pore structure for NAM, to give no room for growth of coarse PbSO4 crystals   

- finding from literature that some NAM structures comprising advanced carbon additives show such (1) finer pore structure  and  also (2) a higher DCA 

[P4] E.Meissner, “Compare morphology & material parameters of Positive vs. Negative Active Mass”, Presentation #401 at EFB Virtual Workshop *), Nov. 2020 

- other than NAM, REcharge kinetics of PAM does not degrade; PAM pores are finer than NAM pores by about one order of magnitude 

[P5] E.Meissner, “Interaction of Main Reactions and Side Reactions at Pos. and Neg. Electrodes”, presented at 17ELBC, virtual, Sept. 2020

- within NAM, SoC may be locally inhomogeneous over plate (in z- and x-direction, i.e. over electrode height, over electrode depth) ;

- active materials  Pb, H2SO4, PbO2 each have individual SoC;  NAM has usual the LOWEST SoC:  SoC(Pb) < SoC(H2SO4) < SoC(PbO2)

[P6] E.Meissner, “Lead-Acid Battery Side Reactions - Asymmetry at Pos. and Neg. Electrodes”, presented at 16ELBC, Vienna, Sept. 2018 

- simple Ah tracking does not represent a “true” SoC value due to various side reactions, incl. oxygen cycle; 

- Oxygen Cycle in both VRLA and flooded L/A batteries is coupling positive and negative electrode side reactions  

[P7] E.Meissner, “Lead-Acid Battery L/A Batteries in PSOC Operation:  a challenge for NAM recharge”, presented at 11LABAT2021, virtual, June 2021 

- at PSoC, Ostwald Ripening of PbSO4 impedes Pb2+ supply for recharge by (1) crystal coarsening (less solubility) (2) relocation of PbSO4 (farer distance) 

[P8] E.Meissner, “Particle Size and Surface Shape of Active Materials: Impact from Free Surface Energy”, presented at 11LABAT2021, virtual, June 2021

- Free Surface Energy of solid/electrolyte interface is decisive for shape and structure of battery materials - essential for battery characteristics and function 

[P9] E.Meissner, “Battery Micro-Cycling in Start/Stop Operation: O2 Intermediate Storage Acting as a Charge Buffer”, presented at AABC Europe, Wiesbaden Jan. 2020

- dynamic battery operation: iO2-red@NAM NOT synchronous to iO2 @PAM; O2 recombined at NAM generated MUCH EARLIER at PAM & stored intermediately

*) Full Title of series of EFB Workshops:   “DCA and Heat”: Testing Charge Acceptance and High Temperature Durability for Advanced Lead 12 V Batteries;   

organized by CENELEC and Consortium of Battery Innovation,  Jan. 2017 (Eberbach), May 2018 (Alcala), May 2019 (Bruges), May + Nov 2020 (virtual), June 2022 (Bergamo)
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References to Conference Presentations addressing topics in this context, and some Key messages and caveats

*) Full Title of series of EFB Workshops:and ALBA Workshops, organized by CENELEC and Consortium of Battery Innovation:   

“Automotive Lead Battery Advancements”;  June 2022 (Bergamo), June 2023 (Wolfsburg; comprising preceding Webinars), June 2024 (Paris)

“DCA and Heat”: Testing Charge Acceptance and High Temperature Durability for Adv. Lead 12 V Batteries”; Jan 2017 (Eberbach), May 2018 (Alcala), May 2019 (Bruges), May+Nov 2020 (virtual) 

[P10] E.Meissner, “Oxygen Cycle in Lead-Acid Batteries: Implications from Inhomogeneous O2 Reduction Reaction at NAM”, presented 12AABC Europe, Mainz June 2022

- charge acceptance of NAM degraded by O2 recombination at NAM in PSoC duty  (O2 reduction during non-charge phases enhances Ostwald Ripening of PbSO4 )

[P11] E.Meissner, “Mechanisms and morphology limiting charge acceptance   //   CA limitations – literature & interpretation of new findings”, 

Presentation #2B3 at EFB Workshop “High-Temperature Durability Tests for Advanced Lead–Acid 12-V Batteries:  ALBA”, Bergamo, July 2022  *)

- literature survey & summary of key insights and implications from recent years about DCA of NAM, O2 Reduction Reaction, Ostwald, SoC imbalance 

[P12] E.Meissner, “Oxygen Reduction Reaction promoting Ostwald Ripening of PbSO4 Crystals at NAM Electrode Surface”, presented at 18ELBC, Lyon, Sept. 2022 

- O2 reduction preferably at NAM geometrical surface; local discharge promotes PbSO4 Ostwald Ripening and imbalance  SoC(Pb) < SoC(H2SO4) < SoC(PbO2)

[P13] E.Meissner, “The Big Short Challenge  - why no metal-metal short ”, Presentation at ALBA Webinar “1 Big Short Challenge”, 24 Jan 2023 *)

- no persistent high current-shorts in LAB, as metallic shorts (direct metallic contacts between positive and negative metal parts) cannot persist in LAB  

[P14] E.Meissner, “Dynamics of Electrode Reactions upon Battery Charging”, Presentation W35a_Meissner.pdf at ALBA Webinar “3 Recharge Kinetics”,

8 Jun 2023; ALBA Workshop Wolfsburg, June 2023 *)

-  Multiple Reactions simultaneously at same Electrode: Differences between PAM and NAM upon recharge (main reaction, gas evolution, capacitance)

[P15] E.Meissner, “Recharge of LAB - kinetics, dynamics, charge efficiency; Discussion of Experiments & Takeaway”, Presentation W35b, Webinar Wolfsburg, 2023  *)

- summary from various Authors:  PAM potential stabilized against fast fluctuations by PbO2 pseudo-capacity; no corresponding effect with NAM

[P16] E.Meissner, “Understanding fast transient SOF recovery at onset of battery recharge”, Presentation CR03 at ALBA Workshop, Paris, June 2024 *)

- PbO2 pseudo-capacitance: experimental findings, quantification, mechanism, consequences for stabilizing PAM potential against fast fluctuations  SoF

Many aspects from [P1-P16] are addressed in

[10] E.Meissner, “Valve-regulated batteries: Oxygen Cycle”, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 

Elsevier, 2023,  ISBN 9780124095472, https://doi.org/10.1016/B978-0-323-96022-9.00067-0.    

(https://www.sciencedirect.com/science/article/pii/B9780323960229000670)

cf. E.Meissner, “Lead-Acid Systems - Valve-regulated batteries: Oxygen Cycle“  in: J.Garche et.al. (eds.), Encyclopedia of Electrochemical Power Sources, 

2.ed., Elsevier, 2024, ISBN: 9780323960229 / 9780323958226 

https://doi.org/10.1016/B978-0-323-96022-9.00067-0
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