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Failure Modes in Lead Acid Batteries (LABs) 
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Changes in acid concentration in the top and bottom electrolyte 

layers on cell cycling 

Electrolyte Variations During Cycling

4

SoC
Specific 

Gravity

100% 1.33

75% 1.37

50% 1.27

25% 1.24

Discharged 1.21

Specific gravity between full charge and 

discharge cell. Assumes Flooded cell design [3]

Measurements of  magnetic susceptibility provide insights about changes in H+ concentration in the cell.

Acid stratification in flooded batteries can develop fast, leading to permanent damage due to inhomogeneous current 

distribution in the vertical direction of the electrodes.
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Need for improved sensitivity, 

accuracy, and validation of  methods 

such as magnetic field imaging, magnetic 

susceptibility monitoring, and magnetic 

field probing to predict battery SoH. 

Research Gaps from Literature Review

Further research is required for precise 

SoH estimation in flooded LABs. 
Lack of  techniques that can 

accurately and comprehensively 

assess stratification in LABs at 

different SoCs. 
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Introduction Objectives
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Proof  of  Concept Magnetic Field Monitoring

The motivation behind this research is the need for advanced techniques to detect stratification in 

flooded lead-acid batteries at different SoCs. 

The general objective is to develop a real-time battery monitoring system that is non-invasive, 

non-destructive, and highly accurate for flooded LABs applications. 

The objective of  this stage is to measure the magnetic field response at the electrolyte level in 

full flooded lead acid cells. 

September 2024, ELBC
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Magnetic Field Technique Working Principle

Coil 1 Coil 2

AC Power Supply

Voltmeter

Induced 

Current
Current

Resistance

Induced EMF

B

H2SO4/Lead Acid Cell

Coupled Coils Setup

Resonance in magnetic field coupling between two external coupled coils can  be used to detect stratification 

inside the cell.

Through mutual inductance changes in magnetic field are mapped

Primary and Secondary Coil Positioning with Electrolyte Solutions

An AC signal with variable voltage and frequency was applied to the primary coil, and the output voltage across the 

secondary coil was measured. The measurements were optimized to achieve the largest signal response in the output coil. 

September 2024, ELBC
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Objective 1: Objective 2: Objective 3: 

Objective 1.1: Secondary Coil Output Voltage 

(SCOV) Variations at Individual Electrolytes

Objective 1.1: Secondary Coil Output Voltage 

(SCOV) Variations with Coil Separation at Electrolyte 

Level in a Full Cell during cycling
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• Map elemental composition of  the electrodes

• Perform energy dispersive x-ray analysis

Compare with magnetic imaging scans to identify 

correlations

The magnetic field will be mapping using an array 

of  magnetoresistive sensors for 6 cells, 200 cycles

Simulate the magnetic field mapping of  flooded lead 

acid cells using finite element modeling in the 

COMSOL Multiphysics environment. 

3D Lead Acid Cell Simulation-Adapted from Dr. Parmender Singh 

Model for Li-ion Electrochemistry.

The simulated results will be compared to the 

experimental findings obtained from objectives 1 

and 2.

Objectives of  this Research
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Coupled Coils Measurements at Different 

Electrolyte Concentrations
Coupled Coils Measurements at the Cell Lower 

Electrolyte Level

pH Measurement at the Electrolyte 

Level 

Prepare Electrolyte at Different 

Concentrations 

Preparation of Solutions

SG (H2SO4) H2SO4 (ml) H2O (ml)

1.07 20ml 80ml

1.14 40ml 60ml

1.20 60ml 40ml

1.33 80ml 20ml

H2SO4 

Concentration

pH Theoretical 

Value 

1.07 -0.337

1.14 -0.667

1.20 -0.872

1.33 -1.026

Input Data Output Data 

Frequency 

Range (kHz)

Primary Coil

 VRMS (V)

Secondary Coil 

VRMS (V)

10
1.07 H2SO4

20

1.14 H2SO430

40

1.20 H2SO450

60

1.33 H2SO470

3.535

Experimental Approach 

Table 1. Preparation of  10%-40% H2SO4 

Solutions

Table 2. Theoretical pH for 10%-40% 

H2SO4 Concentrations

Ranges of  Frequency and Voltage Input at Different H2SO4 Concentrations 

Introduction Objectives Methodology
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pH Measurements for 1.07-1.33 H2SO4 Concentrations

pH Measurements for 1.07-1.33 H2SO4 Concentrations

H2SO4 pH Stdv

1.07 -0.40 0.05

1.14 -0.82 0.07

1.20 -1.32 0.05

1.33 -1.67 0.04

As the Sulfuric acid concentration increases the 

pH decreases due to donation of  H+ to water. 

The pH was measured to represent changes in concentration at the electrolyte during cell’s cycling.

pH Measurement Results

pH Measurement for Different H2SO4 

Concentrations

At the cell level, during discharge sulfuric acid is consumed 

and water is produced.

September 2024, ELBC
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Coupled Coils Measurements at Different 

Electrolyte Concentrations
Coupled Coils Measurements at the Cell Lower 

Electrolyte Level

pH Measurement at the Electrolyte 

Level 

Prepare Electrolyte at Different 

Concentrations 

Preparation of Solutions

(H2SO4) H2SO4 (ml) H2O (ml)

1.07 20ml 80ml

1.14 40ml 60ml

1.20 60ml 40ml

1.33 80ml 20ml

H2SO4 

Concentration

pH Theoretical 

Value 

1.07 -0.337

1.14 -0.667

1.20 -0.872

1.33 -1.026

Input Data Output Data 

Frequency 

Range (kHz)

Primary Coil

 VRMS (V)

Secondary Coil 

VRMS (V)

10
1.07 H2SO420

1.14 H2SO4
30

40

1.20 H2SO4
50

60

1.33 H2SO470

0.5-3.5

Experimental Approach 

Preparation of  10%-40% H2SO4 Solutions Theoretical pH for 10%-40% H2SO4 

Concentrations

Ranges of  Frequency and Voltage Input at Different H2SO4 Concentrations 

Introduction Objectives Methodology
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Characterization of  Frequency and Amplitude Input Values

-Frequencies: 10-70kHz 

 (5kHz interval) 

-Amplitude Voltage: 0.5-3.5V 

 (0.5V steps) 

-H2SO4 concentrations: 1.07-1.33

 (1.6-1.33 SG)

Introduction Objectives Methodology Results

September 2024, ELBC
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SCOV Variation with Coil Separation

-Frequency Used: 10-70kHz (5kHz interval;1kHz interval 25-35kHz) 

-Input Amplitude Voltage: 0.5-3.5V (0.5V  interval)

Note changes in output voltage as distance between coils increase 

Introduction Objectives Methodology Results
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Average Results of  Output Voltage (mV)

Frequency (kHz) 1.07 H2SO4 1.14 H2SO4 1.20 H2SO4 1.33 H2SO4

10 77.0 75.8 76.2 75.7

20 134.5 130.9 130.8 130.3

30 1011.3 964.0 947.3 945.2

40 198.0 188.4 187.0 187.4

50 102.3 96.0 94.7 95.2

60 74.1 69.1 69.0 68.4

70 60.4 56.0 55.0 55.3

Coupled Coils Measurements in Sulfuric Acid

SCOV at Different H2SO4 Concentrations

Coupled Coils Measurements at 

Different Electrolyte Concentrations

September 2024, ELBC

The optimal AC input frequency maximizes the 

induced magnetic field response 
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Coupled Coils Measurements at Different 

Electrolyte Concentrations

Coupled Coils Measurements at the 

Cell Lower Electrolyte Level
pH Measurement at the Electrolyte 

Level 

Prepare Electrolyte at Different 

Concentrations 

Preparation of Solutions

(H2SO4) H2SO4 (ml) H2O (ml)

1.07 25ml 75ml

1.14 50ml 50ml

1.20 75ml 25ml

1.33 100ml 0ml

H2SO4 

Concentration

pH Theoretical 

Value 

1.07 -0.337

1.14 -0.667

1.20 -0.872

1.33 -1.026

Input Data Output Data 

Frequency 

Range (kHz)

Primary Coil

 VRMS (V)

Secondary Coil 

VRMS (V)

30-35 1.33H2SO43.535

Experimental Approach 

Preparation of  10%-40% H2SO4 Solutions Theoretical pH for 10%-40% H2SO4 

Concentrations

Ranges of  Frequency and Voltage Input at Different H2SO4 Concentrations 

+ -

X

Introduction Objectives Methodology
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SCOV During Discharge (Lower-Left Section of  Electrolyte)

Primary and Secondary Coils 

Positioned at the Left Lower 

Section in the Cell-Electrolyte Only

The SCOV gradually increases as the electrolyte concentration decreases

Results from Experimental Approach of  Output Voltage at 

33kHz Input Voltage During Discharge

Results from Experimental Approach of  Output Voltage at 

30kHz Frequency

September 2024, ELBC
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Primary and Secondary Coils 

Positioned at the Left Lower 

Section in the Cell-Electrolyte 

Only

SCOV During Charge (Lower-Left Section of  Electrolyte)

Results from Experimental Approach of  Output Voltage at 

33kHz Input Voltage During Charge
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Takeaways from Preliminary Experimental Results 

pH Electrolyte Measurements

• pH measurements were conducted at various sulfuric acid concentrations ranging from 1.07 to 

1.33 specific gravity. 

• The data obtained consistently and reproducibly showed a measurable relationship between these 

concentrations and the corresponding pH levels, particularly at very low pH values. 

September 2024, ELBC
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Takeaways from Preliminary Experimental Results 

Secondary Coil Output Voltage (SCOV) at Lower Electrolyte Level

• The optimal AC input frequency that maximizes the induced magnetic field response lies in the range of  30kHz-

33kHz, depending on the physical properties of  the magnetic field inductors (air core solenoid coils).

• A clear correlation between the output voltage resulting from the interaction of  the induced magnetic field and 

changes in the electrolyte concentration was observed.

• If  we increase the input voltage at the primary coil then the magnetic field excitation increases and the voltage at the 

secondary coil also correspondingly increases.

September 2024, ELBC
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Takeaways from Preliminary Experimental Results 

Secondary Coil Output Voltage (SCOV) at Electrolyte Level in a Full Cell

• The magnetic field decreases during charging and increases during discharge

• The H+ proton concentration in the electrolyte and the SCOV both vary with the specific gravity 
during battery cycling  

These findings provide a foundation for the development of  an efficient and effective battery 
monitoring system, that has the potential to significantly improve the reliability and lifespan of  
flooded LABs.

September 2024, ELBC
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Objective 1: Objective 2: Objective 3: 

Objective 1.2: Secondary Coil Output Voltage 

(SCOV) Variations at individual Electrolytes

Objective 1.3: Secondary Coil Output Voltage 

(SCOV) Variations with Coil Separation at Electrolyte 

Level in a Full Cell during cycling
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• Map elemental composition of  the electrodes

• Perform energy dispersive x-ray analysis

Compare with magnetic imaging scans to identify 

correlations

The magnetic field will be mapping using an array 

of  magnetoresistive sensors for 6 cells, 200 cycles

Simulate the magnetic field mapping of  flooded lead 

acid cells using finite element modeling in the 

COMSOL Multiphysics environment. 

3D Lead Acid Cell Simulation-Adapted from Dr. Parmender Singh 

Model for Li-ion Electrochemistry.

The simulated results will be compared to the 

experimental findings obtained from objectives 1 

and 2.
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O2: Proof  of  Concept for Magnetoresistive Sensors
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𝐵𝑚 =
4X10−7

Tm

A
 (1A)

2𝜋(0.0127𝑚)
 

Bm= 1.5x10-5T or 0.15 G

Fig 24. Estimate of sensitivity of different magnetic sensors. 

Anisotropic Magnetoresistance (AMR)

Sensing direction 

of  magnetic field

N(S)

S(N)

1pT 1nT 1! T 1mT

Hall Effect Sensor

AMR Magnetometer

GMR Magnetometer

TMR Magnetometer

Earth’s 

MF

Geomagnetic

Noise

Use of  permalloy, an alloy of  nickel and iron whose resistance changes proportionally when 

presented with a magnetic field. Via analog circuitry, the resistance is then converted to a voltage. 

The voltage generated is directly proportional to the original current. 

1’’
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Experimental Setup with Sensors

September 2024, ELBC

Extract Aged and Fresh Cells

Place Magnetoresistors at the Cell’s Electrolyte Level

3 Cells-60 Cycles and 3 Cells-Pristine | Specific Gravities: 1.07-1.30 

Introduction Objectives Methodology



Objective 1: Objective 2: 

Objective 1.2: Secondary Coil Output Voltage 

(SCOV) Variations at individual Electrolytes 

Objective 1.3: Secondary Coil Output Voltage 

(SCOV) Variations with Coil Separation at Electrolyte 

Level in a Full Cell during cycling
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• Map elemental composition of  the electrodes

• Perform energy dispersive x-ray analysis

Compare with magnetic imaging scans to identify 

correlations

The magnetic field will be mapping using an array 

of  magnetoresistive sensors for 6 cells, 200 times

Simulate the magnetic field mapping of  flooded lead 

acid cells using finite element modeling in the 

COMSOL Multiphysics environment. 

3D Lead Acid Cell Simulation-Adapted from Dr. Parmender Singh 

Model for Li-ion Electrochemistry.

The simulated results will be compared to the 

experimental findings obtained from objectives 1 

and 2.
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• Magnetic susceptibility (χm) indicates the ability of  a material to be magnetized in response 

to an applied magnetic field. 

• It provides a measure of  how a material will react when placed in a magnetic field. 

It is calculated as the ratio of  the magnetization (M) of  the material to the applied magnetic field 

strength (H)

𝜒m =
𝑀

𝐻

Magnetic Susceptibility Introduction
Introduction and Background

• Depending on the atomic composition of  a substance, it can have a diamagnetic or 

paramagnetic response. χ m> 0

Alignment with the 

magnetic field

Alignment against 

the magnetic field

χm < 0

Magnetic field Bo

Diamagnetic Paramagnetic
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𝐿 =
𝑁2𝜇𝐴

𝐼

𝜇 = 𝜇𝐼𝜇0

Fig. 8 Air Core Solenoid Inductor

The magnetic field strength, 𝐵 , inside the center of  a solenoid is calculated using

 the equation:

B = 7.074 x10−6 T

Introduction and Background

A changing magnetic field, induces an electric field, which results in an induced voltage response

Where,

L= Inductance of  coil (H)

N=Number of  turns in the coil

μ=Permeability of  core material 

μI=Relative permeability, dimensionless (μ0=1 for air)

μ0    =1.26x10-6 T m/At permeability of  free space

A=Area of  coil in square meters=πr2 (See figure 6)

l=Average length of  coil in meters 
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The magnetic field resulting from a typical lead acid cell is given by the Biot-Savart law, which measures the 

magnetic field generated by an electric current.

 The equation is as follows: 

Magnetic Field Technique Concepts

𝐵𝑚 =
𝜇0𝐼

2𝜋𝑟
 

where,

Bm  Is magnitude of  magnetic field measured by a sensor 

μ0   Is the permeability of  free space

 I    Is the current

 r    Is the perpendicular distance from the sensor to the coil 

Introduction and Background Literature Review Research Questions Objectives Methodology
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