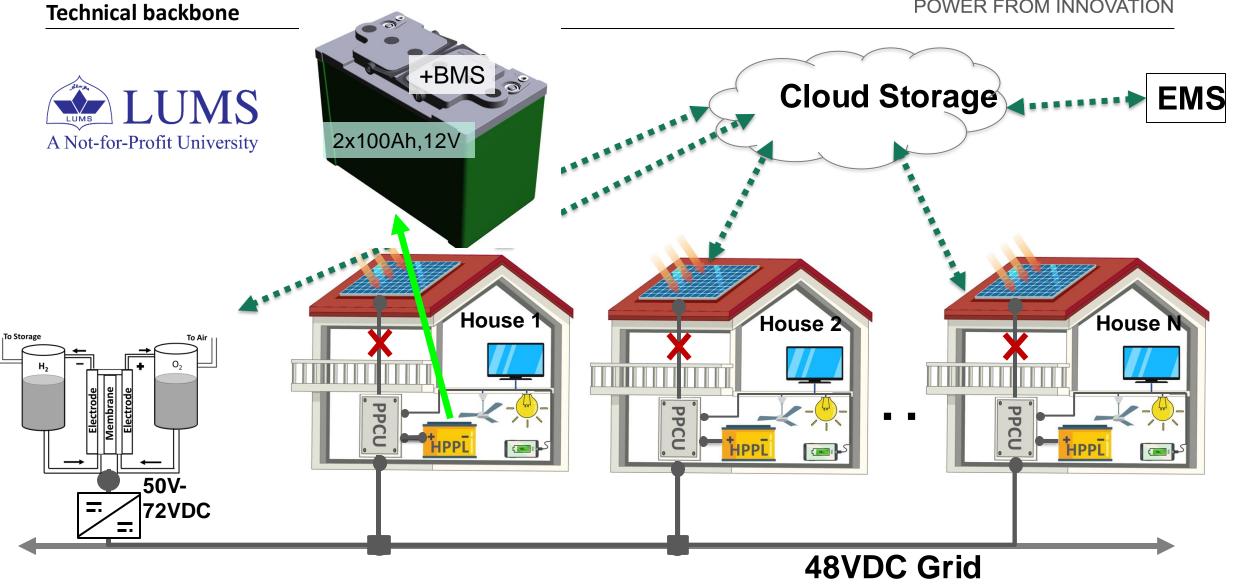


Enhancing the performance of pure lead batteries for cycle life in Renewable Energy Storage Applications ELBC 2024 – Milano – 2024.09.18

Co-funded by the European Union

Dr. Bernhard Riegel, Dr. Eduardo Cattaneo, Dr. David Engemann, Dr. Götz Langer Hoppecke Batterien

Project: 101096033 — LoCEL-H2 — HORIZON-CL5-2022-D3-01


HOPPECKE POWER FROM INNOVATION

LoCEL-H2

LoCel-H2, Work Package 4: LAB within the Microgrid

HOPPECKE POWER FROM INNOVATION

Project Overview

The Battery (technical specialities, layout)

Tests, Results, highligthing PSOC service

Summary

https://locelh2.org/

Sealed Lead Acid Battery in Thin Plate Pure Lead Technology

Large capacity range from 12V 50 - 170 Ah (TT) and 12V 100 - 200 Ah (FT)

Feature	Advantage	Benefit
Performance optimized continuously produced oure lead grid electrodes	 ✓ Lowest corrosion rates <i>LABAT 2021, Langer, Cattaneo,</i> <i>Riegel</i> ✓ Minimized material consumption ✓ Low tolerance manufacturing 	 Lower operating costs Design Life 15 years @ 20°C, 10 years @ 30°C Superior high current performance over service life
Thin plate technology	 Higher number of electrodes in the given volume Low internal resistance despite high energy density: A very big advantage, especially at cold temperatures. Significantly more surface area, thus higher power density and faster chargeability 	 Increased energy efficiency Fast charging capability Lower investment costs High current capability and cycle stability

HPPL Battery for cyclic applications (e.g. photovoltaic)

HOPPECKE POWER FROM INNOVATION

Test Batteries and Single Cells appearance

Same cell size as in the bloc to the right

For: PAM recipe, NAM recipe (Expander trials), Layout, AGM

Layout modifications

		TT110 RP	LoCel-battery	
	C ₁₀	110 Ah	100 Ah	
layout	pos / neg	08/09	08/09	
grid dimension	height	168 mm	168 mm	
ratio	PAM/NAM (fo dry)	1,28	1,57	
electrolyte	density @20°C	1,335 g/ml	1,320 g/ml	
spec Capacity	pos	11,60 g/Ah	15,53 g/Ah	
spec. Capacity	neg	9,05 g/Ah	9,89 g/Ah	
theoretical max PAM utilization	TMPU	46.20/	34,8%	
	(acid consumed)	46,3%		
saturation, measured	100%	878 ml	835 ml	

HOPPECKE POWER FROM INNOVATION

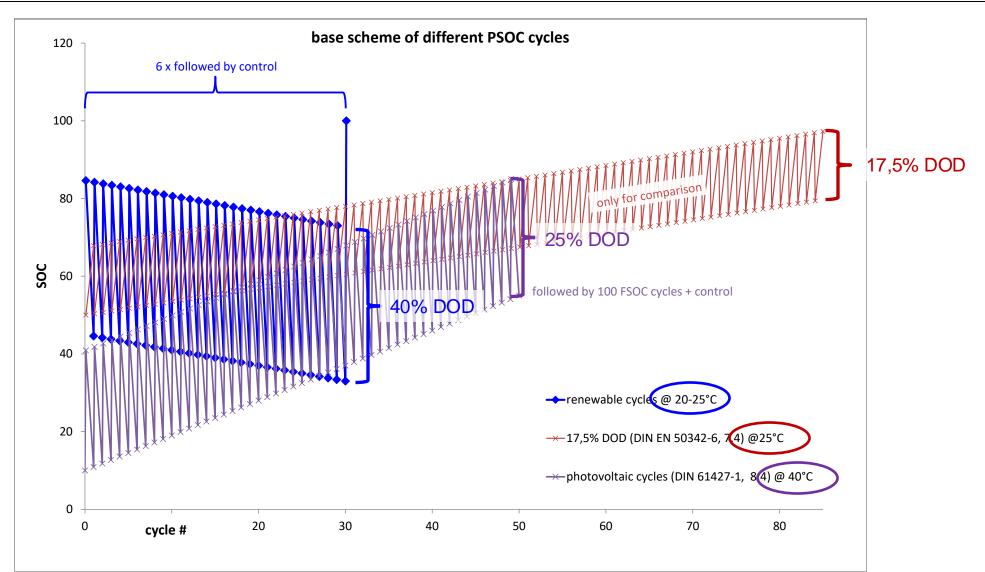
Project Overview

The Battery (technical specialities, layout)

Tests, Results, highligthing PSOC service

Summary

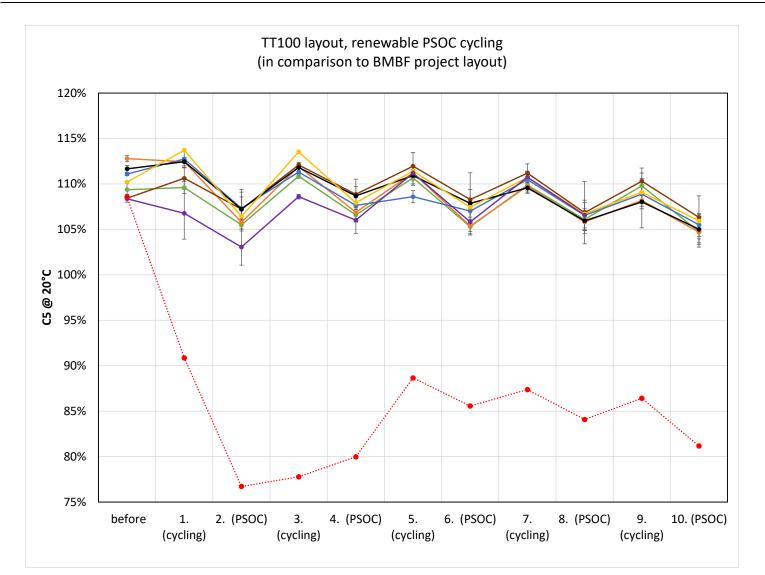
https://locelh2.org/


✓ Test procedure defined (in blue tests acc to internal standards) and in evaluating with first prototyping batteries

To simulate	cyclability	PSOC	PSOC	High temperature, life time	Storage behaviour	Charge efficiency	Deep discharge
special test	70% DOD DIN 60254-1 cycling	Renewable Energy PSOC cycles	IEC 61427-1 (chapter 8.4) PV cycle endurance	corrosion acc. to IEC 60896-21 6.16 (55°C)	Self discharge, acc. to IEC 60896-21 (6.12)	acc. to IEC 62093 + adjustments	deep dch test (internal)
remark	@ 40°C	Prolongation of equalization cha	@ 40°C				10 x [3 x (C ₁₀ ,1Vpc 12h rest) + cha]
status	100 cycles	5 simulated years	5. Unit C10~97%	6. Unit C3~104%	1% / month	> 97%	achieved
progress	running	running	running	running	done	done	done

General

Different PSOC cycles

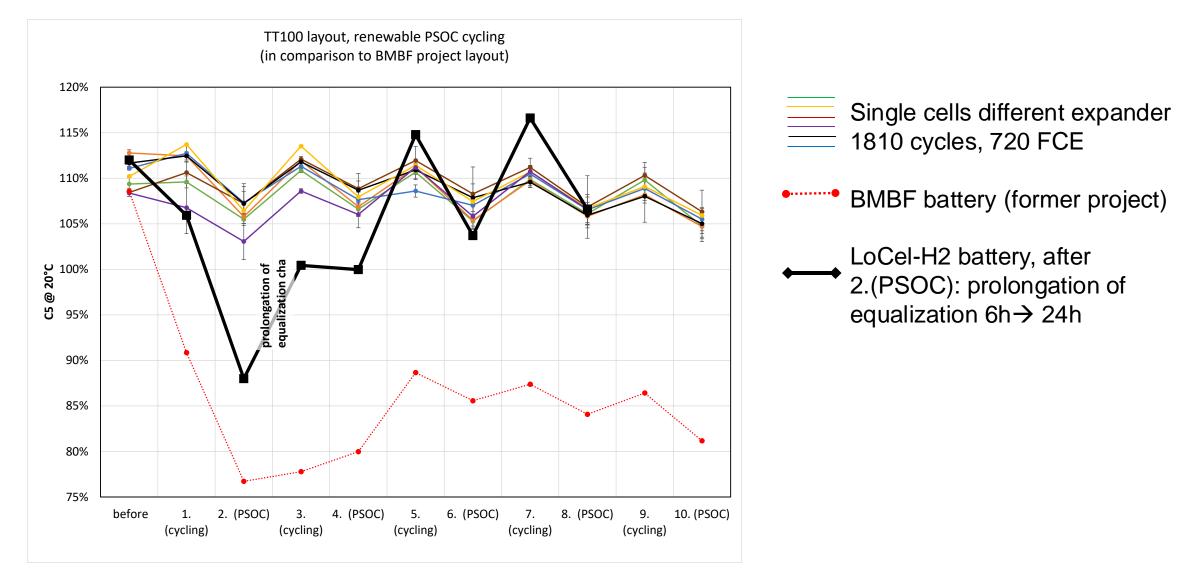


LoCEL-H2

LoCel-HPPL Battery

PSOC cycling

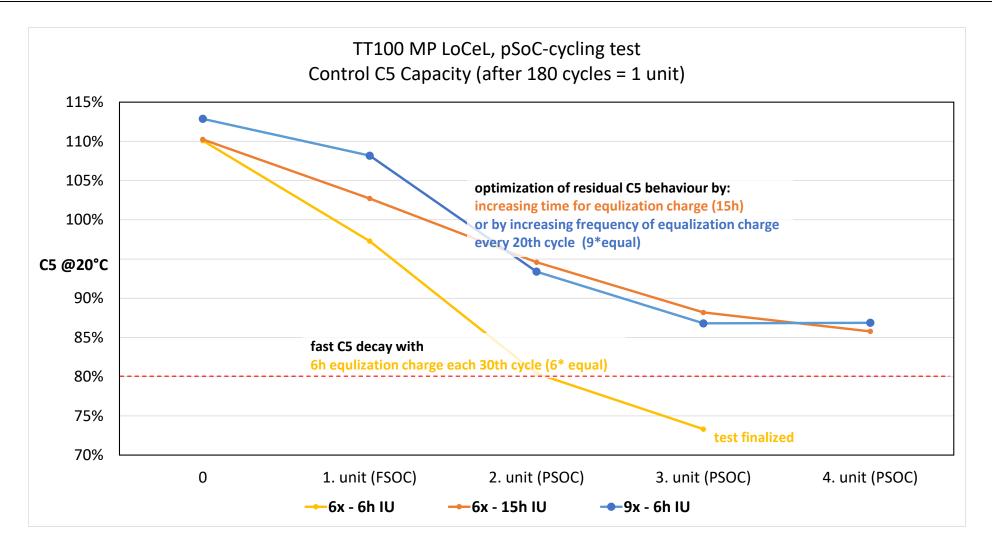
- Single cells different expander 1810 cycles, 720 FCE



		BMBF project	LoCel-battery	
	C ₁₀	245 Ah	100 Ah	
layout	pos / neg	12/12	08/09	
grid dimension	height	238 mm	168 mm	
ratio	PAM/NAM (fo dry)	1,77	1,57	
electrolyte	density @20°C	1,335 g/ml	1,320 g/ml	
spec Capacity	pos	14,40 g/Ah	15,53 g/Ah	
spec. Capacity	neg	8,14 g/Ah	9,89 g/Ah	
theoretical max PAM utilization	TMPU	42.0%	34,8%	
	(acid consumed)	43,0%		
saturation, measured	100%	2225 ml	835 ml	

LoCel-HPPL Battery

PSOC cycling



LoCel-HPPL Battery

HOPPECKE POWER FROM INNOVATION

Influence equalization charge

HOPPECKE POWER FROM INNOVATION

Project Overview

The Battery (technical specialities, layout)

Tests, Results, highligthing PSOC service

Summary

https://locelh2.org/

- > Horizon Europe project LoCel-H2 with a prosumer plug-and-play Microgrid
- pure lead HPPL Battery as storage system with high circularity to be developed for renewable cycles
- > Layout is significant for cyclability
- PSOC cycling regime was set closer to reality by a decrease of SOC during cycling and introducing regular equalization charges
- PSOC cycling result of LoCel-H2 battery can be optimized via more frequent and/or longer equalization charges

Thanks for your attention

We are pleased to answer your questions

Co-funded by the European Union

